Re: [PATCH v3 2/5] drivers: mtd: nand: Add qpic_common API file

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 





On 3/7/2024 12:56 PM, Dmitry Baryshkov wrote:
On Thu, 7 Mar 2024 at 06:19, Md Sadre Alam <quic_mdalam@xxxxxxxxxxx> wrote:

Add qpic_common.c file which hold all the common
qpic APIs which will be used by both qpic raw nand
driver and qpic spi nand driver.

Co-developed-by: Sricharan Ramabadhran <quic_srichara@xxxxxxxxxxx>
Signed-off-by: Sricharan Ramabadhran <quic_srichara@xxxxxxxxxxx>
Co-developed-by: Varadarajan Narayanan <quic_varada@xxxxxxxxxxx>
Signed-off-by: Varadarajan Narayanan <quic_varada@xxxxxxxxxxx>
Signed-off-by: Md Sadre Alam <quic_mdalam@xxxxxxxxxxx>
---
Change in [v3]

* Added original copy right

* Removed all EXPORT_SYMBOL()

* Made this common api file more generic

* Added qcom_ prefix to all api in this file

* Removed devm_kfree and added kfree

* Moved to_qcom_nand_controller() to raw nand driver
   since it was only used by raw nand driver, so not needed
   as common

* Added kernel doc for all api

* made reverse tree of variable declaration in
   prep_adm_dma_desc() function

* Added if(!ret) condition in prep_adm_dma_desc()
   function

* Initialized slave_conf as 0 while declaration

Change in [v2]

* Posted initial support for common api file

Change in [v1]

* Posted as RFC patch for design review

  drivers/mtd/nand/Makefile            |    1 +
  drivers/mtd/nand/qpic_common.c       |  781 ++++++++++++++
  drivers/mtd/nand/raw/qcom_nandc.c    | 1440 +++-----------------------
  include/linux/mtd/nand-qpic-common.h |  486 +++++++++
  4 files changed, 1403 insertions(+), 1305 deletions(-)
  create mode 100644 drivers/mtd/nand/qpic_common.c
  create mode 100644 include/linux/mtd/nand-qpic-common.h

diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
index 19e1291ac4d5..131707a41293 100644
--- a/drivers/mtd/nand/Makefile
+++ b/drivers/mtd/nand/Makefile
@@ -12,3 +12,4 @@ nandcore-$(CONFIG_MTD_NAND_ECC) += ecc.o
  nandcore-$(CONFIG_MTD_NAND_ECC_SW_HAMMING) += ecc-sw-hamming.o
  nandcore-$(CONFIG_MTD_NAND_ECC_SW_BCH) += ecc-sw-bch.o
  nandcore-$(CONFIG_MTD_NAND_ECC_MXIC) += ecc-mxic.o
+obj-y += qpic_common.o

So, this object file will be built-in into all kernels that have NAND
enabled? Clearly this is not a way to go.

 Sorry its my mistake, will add config for this qpic_common API file.

diff --git a/drivers/mtd/nand/qpic_common.c b/drivers/mtd/nand/qpic_common.c
new file mode 100644
index 000000000000..11e322fdd706
--- /dev/null
+++ b/drivers/mtd/nand/qpic_common.c
@@ -0,0 +1,781 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (c) 2016, The Linux Foundation. All rights reserved.
+ */
+#include <linux/mtd/nand-qpic-common.h>
+
+/*
+ * qcom_free_bam_transaction:  Frees the BAM transaction memory
+ */

This is not a kerneldoc comment. Please take a look at the documentation first.
Ok

+void qcom_free_bam_transaction(struct qcom_nand_controller *nandc)
+{
+       struct bam_transaction *bam_txn = nandc->bam_txn;
+
+       kfree(bam_txn);
+}
+
+/*
+ * qcom_clear_read_regs:       reset the register read buffer
+ *                             for next NAND operation
+ */
+void qcom_clear_read_regs(struct qcom_nand_controller *nandc)
+{
+       nandc->reg_read_pos = 0;
+       qcom_nandc_read_buffer_sync(nandc, false);
+}
+
+/*
+ * qcom_qpic_bam_dma_done:     Callback for DMA descriptor completion
+ *
+ * @data:                      data
+ */
+void qcom_qpic_bam_dma_done(void *data)
+{
+       struct bam_transaction *bam_txn = data;
+
+       /*
+        * In case of data transfer with NAND, 2 callbacks will be generated.
+        * One for command channel and another one for data channel.
+        * If current transaction has data descriptors
+        * (i.e. wait_second_completion is true), then set this to false
+        * and wait for second DMA descriptor completion.
+        */
+       if (bam_txn->wait_second_completion)
+               bam_txn->wait_second_completion = false;
+       else
+               complete(&bam_txn->txn_done);
+}
+
+/*
+ * qcom_nandc_read_buffer_sync:        Check for dma sync for cpu or device
+ *
+ * @is_cpu:                    cpu or Device
+ */
+void qcom_nandc_read_buffer_sync(struct qcom_nand_controller *nandc,
+                                bool is_cpu)
+{
+       if (!nandc->props->is_bam)
+               return;
+
+       if (is_cpu)
+               dma_sync_single_for_cpu(nandc->dev, nandc->reg_read_dma,
+                                       MAX_REG_RD *
+                                       sizeof(*nandc->reg_read_buf),
+                                       DMA_FROM_DEVICE);
+       else
+               dma_sync_single_for_device(nandc->dev, nandc->reg_read_dma,
+                                          MAX_REG_RD *
+                                          sizeof(*nandc->reg_read_buf),
+                                          DMA_FROM_DEVICE);
+}
+
+/*
+ * qcom_offset_to_nandc_reg:   Get the actual offset for qpic register
+ * @ offset:                   register offset
+ */
+__le32 *qcom_offset_to_nandc_reg(struct nandc_regs *regs, int offset)
+{
+       switch (offset) {
+       case NAND_FLASH_CMD:
+               return &regs->cmd;
+       case NAND_ADDR0:
+               return &regs->addr0;
+       case NAND_ADDR1:
+               return &regs->addr1;
+       case NAND_FLASH_CHIP_SELECT:
+               return &regs->chip_sel;
+       case NAND_EXEC_CMD:
+               return &regs->exec;
+       case NAND_FLASH_STATUS:
+               return &regs->clrflashstatus;
+       case NAND_DEV0_CFG0:
+               return &regs->cfg0;
+       case NAND_DEV0_CFG1:
+               return &regs->cfg1;
+       case NAND_DEV0_ECC_CFG:
+               return &regs->ecc_bch_cfg;
+       case NAND_READ_STATUS:
+               return &regs->clrreadstatus;
+       case NAND_DEV_CMD1:
+               return &regs->cmd1;
+       case NAND_DEV_CMD1_RESTORE:
+               return &regs->orig_cmd1;
+       case NAND_DEV_CMD_VLD:
+               return &regs->vld;
+       case NAND_DEV_CMD_VLD_RESTORE:
+               return &regs->orig_vld;
+       case NAND_EBI2_ECC_BUF_CFG:
+               return &regs->ecc_buf_cfg;
+       case NAND_READ_LOCATION_0:
+               return &regs->read_location0;
+       case NAND_READ_LOCATION_1:
+               return &regs->read_location1;
+       case NAND_READ_LOCATION_2:
+               return &regs->read_location2;
+       case NAND_READ_LOCATION_3:
+               return &regs->read_location3;
+       case NAND_READ_LOCATION_LAST_CW_0:
+               return &regs->read_location_last0;
+       case NAND_READ_LOCATION_LAST_CW_1:
+               return &regs->read_location_last1;
+       case NAND_READ_LOCATION_LAST_CW_2:
+               return &regs->read_location_last2;
+       case NAND_READ_LOCATION_LAST_CW_3:
+               return &regs->read_location_last3;
+       default:
+               return NULL;
+       }
+}
+
+/*
+ * qcom_prep_adm_dma_desc:     Prepare descriptor for adma
+ * @read:                      read or write
+ * @reg_off:                   offset within the controller's data buffer
+ * @vaddr:                     virtual address of the buffer we want to write to
+ * @size:                      adm dma transaction size in bytes
+ * @flow_control:              flow controller
+ */
+int qcom_prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read,
+                          int reg_off, const void *vaddr, int size,
+                            bool flow_control)
+{
+       struct qcom_adm_peripheral_config periph_conf = {};
+       struct dma_async_tx_descriptor *dma_desc;
+       struct dma_slave_config slave_conf = {0};
+       enum dma_transfer_direction dir_eng;
+       struct scatterlist *sgl;
+       struct desc_info *desc;
+       int ret;
+
+       desc = kzalloc(sizeof(*desc), GFP_KERNEL);
+       if (!desc)
+               return -ENOMEM;
+
+       sgl = &desc->adm_sgl;
+
+       sg_init_one(sgl, vaddr, size);
+
+       if (read) {
+               dir_eng = DMA_DEV_TO_MEM;
+               desc->dir = DMA_FROM_DEVICE;
+       } else {
+               dir_eng = DMA_MEM_TO_DEV;
+               desc->dir = DMA_TO_DEVICE;
+       }
+
+       ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir);
+       if (!ret) {
+               ret = -ENOMEM;
+               goto err;
+       }
+
+       slave_conf.device_fc = flow_control;
+       if (read) {
+               slave_conf.src_maxburst = 16;
+               slave_conf.src_addr = nandc->base_dma + reg_off;
+               if (nandc->data_crci) {
+                       periph_conf.crci = nandc->data_crci;
+                       slave_conf.peripheral_config = &periph_conf;
+                       slave_conf.peripheral_size = sizeof(periph_conf);
+               }
+       } else {
+               slave_conf.dst_maxburst = 16;
+               slave_conf.dst_addr = nandc->base_dma + reg_off;
+               if (nandc->cmd_crci) {
+                       periph_conf.crci = nandc->cmd_crci;
+                       slave_conf.peripheral_config = &periph_conf;
+                       slave_conf.peripheral_size = sizeof(periph_conf);
+               }
+       }
+
+       ret = dmaengine_slave_config(nandc->chan, &slave_conf);
+       if (ret) {
+               dev_err(nandc->dev, "failed to configure dma channel\n");
+               goto err;
+       }
+
+       dma_desc = dmaengine_prep_slave_sg(nandc->chan, sgl, 1, dir_eng, 0);
+       if (!dma_desc) {
+               dev_err(nandc->dev, "failed to prepare desc\n");
+               ret = -EINVAL;
+               goto err;
+       }
+
+       desc->dma_desc = dma_desc;
+
+       list_add_tail(&desc->node, &nandc->desc_list);
+
+       return 0;
+err:
+       kfree(desc);
+
+       return ret;
+}
+
+/*
+ * qcom_submit_descs:  submit descriptor cmd/data
+ */
+int qcom_submit_descs(struct qcom_nand_controller *nandc)
+{
+       struct desc_info *desc, *n;
+       dma_cookie_t cookie = 0;
+       struct bam_transaction *bam_txn = nandc->bam_txn;
+       int ret = 0;
+
+       if (nandc->props->is_bam) {
+               if (bam_txn->rx_sgl_pos > bam_txn->rx_sgl_start) {
+                       ret = qcom_prepare_bam_async_desc(nandc, nandc->rx_chan, 0);
+                       if (ret)
+                               goto err_unmap_free_desc;
+               }
+
+               if (bam_txn->tx_sgl_pos > bam_txn->tx_sgl_start) {
+                       ret = qcom_prepare_bam_async_desc(nandc, nandc->tx_chan,
+                                                         DMA_PREP_INTERRUPT);
+                       if (ret)
+                               goto err_unmap_free_desc;
+               }
+
+               if (bam_txn->cmd_sgl_pos > bam_txn->cmd_sgl_start) {
+                       ret = qcom_prepare_bam_async_desc(nandc, nandc->cmd_chan,
+                                                         DMA_PREP_CMD);
+                       if (ret)
+                               goto err_unmap_free_desc;
+               }
+       }
+
+       list_for_each_entry(desc, &nandc->desc_list, node)
+               cookie = dmaengine_submit(desc->dma_desc);
+
+       if (nandc->props->is_bam) {
+               bam_txn->last_cmd_desc->callback = qcom_qpic_bam_dma_done;
+               bam_txn->last_cmd_desc->callback_param = bam_txn;
+               if (bam_txn->last_data_desc) {
+                       bam_txn->last_data_desc->callback = qcom_qpic_bam_dma_done;
+                       bam_txn->last_data_desc->callback_param = bam_txn;
+                       bam_txn->wait_second_completion = true;
+               }
+
+               dma_async_issue_pending(nandc->tx_chan);
+               dma_async_issue_pending(nandc->rx_chan);
+               dma_async_issue_pending(nandc->cmd_chan);
+
+               if (!wait_for_completion_timeout(&bam_txn->txn_done,
+                                                QPIC_NAND_COMPLETION_TIMEOUT))
+                       ret = -ETIMEDOUT;
+       } else {
+               if (dma_sync_wait(nandc->chan, cookie) != DMA_COMPLETE)
+                       ret = -ETIMEDOUT;
+       }
+
+err_unmap_free_desc:
+       /*
+        * Unmap the dma sg_list and free the desc allocated by both
+        * prepare_bam_async_desc() and prep_adm_dma_desc() functions.
+        */
+       list_for_each_entry_safe(desc, n, &nandc->desc_list, node) {
+               list_del(&desc->node);
+
+               if (nandc->props->is_bam)
+                       dma_unmap_sg(nandc->dev, desc->bam_sgl,
+                                    desc->sgl_cnt, desc->dir);
+               else
+                       dma_unmap_sg(nandc->dev, &desc->adm_sgl, 1,
+                                    desc->dir);
+
+               kfree(desc);
+       }
+
+       return ret;
+}
+
+/*
+ * qcom_prepare_bam_async_desc:        Maps the scatter gather list for DMA transfer
+ *                             and forms the DMA descriptor for BAM.This
+ *                             descriptor will be added in the NAND DMA
+ *                             descriptor queue which will be submitted to DMA
+ *                             engine
+ * @chan:                      dma channel
+ * @flag:                      flags to control DMA descriptor preparation
+ */
+int qcom_prepare_bam_async_desc(struct qcom_nand_controller *nandc,
+                               struct dma_chan *chan,
+                                 unsigned long flags)
+{
+       struct desc_info *desc;
+       struct scatterlist *sgl;
+       unsigned int sgl_cnt;
+       int ret;
+       struct bam_transaction *bam_txn = nandc->bam_txn;
+       enum dma_transfer_direction dir_eng;
+       struct dma_async_tx_descriptor *dma_desc;
+
+       desc = kzalloc(sizeof(*desc), GFP_KERNEL);
+       if (!desc)
+               return -ENOMEM;
+
+       if (chan == nandc->cmd_chan) {
+               sgl = &bam_txn->cmd_sgl[bam_txn->cmd_sgl_start];
+               sgl_cnt = bam_txn->cmd_sgl_pos - bam_txn->cmd_sgl_start;
+               bam_txn->cmd_sgl_start = bam_txn->cmd_sgl_pos;
+               dir_eng = DMA_MEM_TO_DEV;
+               desc->dir = DMA_TO_DEVICE;
+       } else if (chan == nandc->tx_chan) {
+               sgl = &bam_txn->data_sgl[bam_txn->tx_sgl_start];
+               sgl_cnt = bam_txn->tx_sgl_pos - bam_txn->tx_sgl_start;
+               bam_txn->tx_sgl_start = bam_txn->tx_sgl_pos;
+               dir_eng = DMA_MEM_TO_DEV;
+               desc->dir = DMA_TO_DEVICE;
+       } else {
+               sgl = &bam_txn->data_sgl[bam_txn->rx_sgl_start];
+               sgl_cnt = bam_txn->rx_sgl_pos - bam_txn->rx_sgl_start;
+               bam_txn->rx_sgl_start = bam_txn->rx_sgl_pos;
+               dir_eng = DMA_DEV_TO_MEM;
+               desc->dir = DMA_FROM_DEVICE;
+       }
+
+       sg_mark_end(sgl + sgl_cnt - 1);
+       ret = dma_map_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
+       if (ret == 0) {
+               dev_err(nandc->dev, "failure in mapping desc\n");
+               kfree(desc);
+               return -ENOMEM;
+       }
+
+       desc->sgl_cnt = sgl_cnt;
+       desc->bam_sgl = sgl;
+
+       dma_desc = dmaengine_prep_slave_sg(chan, sgl, sgl_cnt, dir_eng,
+                                          flags);
+
+       if (!dma_desc) {
+               dev_err(nandc->dev, "failure in prep desc\n");
+               dma_unmap_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
+               kfree(desc);
+               return -EINVAL;
+       }
+
+       desc->dma_desc = dma_desc;
+
+       /* update last data/command descriptor */
+       if (chan == nandc->cmd_chan)
+               bam_txn->last_cmd_desc = dma_desc;
+       else
+               bam_txn->last_data_desc = dma_desc;
+
+       list_add_tail(&desc->node, &nandc->desc_list);
+
+       return 0;
+}
+
+/*
+ * qcom_prep_bam_dma_desc_cmd: Prepares the command descriptor for BAM DMA
+ *                             which will be used for NAND register reads and
+ *                             writes.
+ * @read:                      read/write type
+ * @reg_off:                   offset within the controller's data buffer
+ * @vaddr:                     virtual address of the buffer we want to write to
+ * @size:                      DMA transaction size in bytes
+ * @flags:                     offset within the controller's data buffer
+ */
+int qcom_prep_bam_dma_desc_cmd(struct qcom_nand_controller *nandc, bool read,
+                              int reg_off, const void *vaddr,
+                                int size, unsigned int flags)
+{
+       int bam_ce_size;
+       int i, ret;
+       struct bam_cmd_element *bam_ce_buffer;
+       struct bam_transaction *bam_txn = nandc->bam_txn;
+
+       bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_pos];
+
+       /* fill the command desc */
+       for (i = 0; i < size; i++) {
+               if (read)
+                       bam_prep_ce(&bam_ce_buffer[i],
+                                   nandc_reg_phys(nandc, reg_off + 4 * i),
+                                   BAM_READ_COMMAND,
+                                   reg_buf_dma_addr(nandc,
+                                                    (__le32 *)vaddr + i));
+               else
+                       bam_prep_ce_le32(&bam_ce_buffer[i],
+                                        nandc_reg_phys(nandc, reg_off + 4 * i),
+                                        BAM_WRITE_COMMAND,
+                                        *((__le32 *)vaddr + i));
+       }
+
+       bam_txn->bam_ce_pos += size;
+
+       /* use the separate sgl after this command */
+       if (flags & NAND_BAM_NEXT_SGL) {
+               bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_start];
+               bam_ce_size = (bam_txn->bam_ce_pos -
+                               bam_txn->bam_ce_start) *
+                               sizeof(struct bam_cmd_element);
+               sg_set_buf(&bam_txn->cmd_sgl[bam_txn->cmd_sgl_pos],
+                          bam_ce_buffer, bam_ce_size);
+               bam_txn->cmd_sgl_pos++;
+               bam_txn->bam_ce_start = bam_txn->bam_ce_pos;
+
+               if (flags & NAND_BAM_NWD) {
+                       ret = qcom_prepare_bam_async_desc(nandc, nandc->cmd_chan,
+                                                         DMA_PREP_FENCE |
+                                                    DMA_PREP_CMD);
+                       if (ret)
+                               return ret;
+               }
+       }
+
+       return 0;
+}
+
+/*
+ * qcom_prep_bam_dma_desc_data:        Prepares the data descriptor for BAM DMA which
+ *                             will be used for NAND data reads and writes.
+ * @read:                      read/write type
+ * @vaddr:                     virtual address of the buffer we want to write to
+ * @size:                      DMA transaction size in bytes
+ * @flags:                     flags to control DMA descriptor preparation
+ */
+int qcom_prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read,
+                               const void *vaddr,
+                                 int size, unsigned int flags)
+{
+       int ret;
+       struct bam_transaction *bam_txn = nandc->bam_txn;
+
+       if (read) {
+               sg_set_buf(&bam_txn->data_sgl[bam_txn->rx_sgl_pos],
+                          vaddr, size);
+               bam_txn->rx_sgl_pos++;
+       } else {
+               sg_set_buf(&bam_txn->data_sgl[bam_txn->tx_sgl_pos],
+                          vaddr, size);
+               bam_txn->tx_sgl_pos++;
+
+               /*
+                * BAM will only set EOT for DMA_PREP_INTERRUPT so if this flag
+                * is not set, form the DMA descriptor
+                */
+               if (!(flags & NAND_BAM_NO_EOT)) {
+                       ret = qcom_prepare_bam_async_desc(nandc, nandc->tx_chan,
+                                                         DMA_PREP_INTERRUPT);
+                       if (ret)
+                               return ret;
+               }
+       }
+
+       return 0;
+}
+
+/*
+ * qcom_read_reg_dma:  prepares a descriptor to read a given number of
+ *                     contiguous registers to the reg_read_buf pointer
+ *
+ * @first:             offset of the first register in the contiguous block
+ * @num_regs:          number of registers to read
+ * @flags:             flags to control DMA descriptor preparation
+ */
+int qcom_read_reg_dma(struct qcom_nand_controller *nandc, int first,
+                     int num_regs, unsigned int flags)
+{
+       bool flow_control = false;
+       void *vaddr;
+
+       vaddr = nandc->reg_read_buf + nandc->reg_read_pos;
+       nandc->reg_read_pos += num_regs;
+
+       if (first == NAND_DEV_CMD_VLD || first == NAND_DEV_CMD1)
+               first = dev_cmd_reg_addr(nandc, first);
+
+       if (nandc->props->is_bam)
+               return qcom_prep_bam_dma_desc_cmd(nandc, true, first, vaddr,
+                                            num_regs, flags);
+
+       if (first == NAND_READ_ID || first == NAND_FLASH_STATUS)
+               flow_control = true;
+
+       return qcom_prep_adm_dma_desc(nandc, true, first, vaddr,
+                                num_regs * sizeof(u32), flow_control);
+}
+
+/*
+ * qcom_write_reg_dma: prepares a descriptor to write a given number of
+ *                     contiguous registers
+ *
+ * @first:             offset of the first register in the contiguous block
+ * @num_regs:          number of registers to write
+ * @flags:             flags to control DMA descriptor preparation
+ */
+int qcom_write_reg_dma(struct qcom_nand_controller *nandc, int first,
+                      int num_regs, unsigned int flags)
+{
+       bool flow_control = false;
+       struct nandc_regs *regs = nandc->regs;
+       void *vaddr;
+
+       vaddr = qcom_offset_to_nandc_reg(regs, first);
+
+       if (first == NAND_ERASED_CW_DETECT_CFG) {
+               if (flags & NAND_ERASED_CW_SET)
+                       vaddr = &regs->erased_cw_detect_cfg_set;
+               else
+                       vaddr = &regs->erased_cw_detect_cfg_clr;
+       }
+
+       if (first == NAND_EXEC_CMD)
+               flags |= NAND_BAM_NWD;
+
+       if (first == NAND_DEV_CMD1_RESTORE || first == NAND_DEV_CMD1)
+               first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD1);
+
+       if (first == NAND_DEV_CMD_VLD_RESTORE || first == NAND_DEV_CMD_VLD)
+               first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD);
+
+       if (nandc->props->is_bam)
+               return qcom_prep_bam_dma_desc_cmd(nandc, false, first, vaddr,
+                                            num_regs, flags);
+
+       if (first == NAND_FLASH_CMD)
+               flow_control = true;
+
+       return qcom_prep_adm_dma_desc(nandc, false, first, vaddr,
+                                num_regs * sizeof(u32), flow_control);
+}
+
+/*
+ * qcom_read_data_dma: prepares a DMA descriptor to transfer data from the
+ *                     controller's internal buffer to the buffer 'vaddr'
+ *
+ * @reg_off:           offset within the controller's data buffer
+ * @vaddr:             virtual address of the buffer we want to write to
+ * @size:              DMA transaction size in bytes
+ * @flags:             flags to control DMA descriptor preparation
+ */
+int qcom_read_data_dma(struct qcom_nand_controller *nandc, int reg_off,
+                      const u8 *vaddr, int size, unsigned int flags)
+{
+       if (nandc->props->is_bam)
+               return qcom_prep_bam_dma_desc_data(nandc, true, vaddr, size, flags);
+
+       return qcom_prep_adm_dma_desc(nandc, true, reg_off, vaddr, size, false);
+}
+
+/*
+ * qcom_write_data_dma:        prepares a DMA descriptor to transfer data from
+ *                     'vaddr' to the controller's internal buffer
+ *
+ * @reg_off:           offset within the controller's data buffer
+ * @vaddr:             virtual address of the buffer we want to read from
+ * @size:              DMA transaction size in bytes
+ * @flags:             flags to control DMA descriptor preparation
+ */
+int qcom_write_data_dma(struct qcom_nand_controller *nandc, int reg_off,
+                       const u8 *vaddr, int size, unsigned int flags)
+{
+       if (nandc->props->is_bam)
+               return qcom_prep_bam_dma_desc_data(nandc, false, vaddr, size, flags);
+
+       return qcom_prep_adm_dma_desc(nandc, false, reg_off, vaddr, size, false);
+}
+
+/*
+ * qcom_alloc_bam_transaction: Allocates and Initializes the BAM transaction
+ */
+struct bam_transaction *
+qcom_alloc_bam_transaction(struct qcom_nand_controller *nandc)
+{
+       struct bam_transaction *bam_txn;
+       size_t bam_txn_size;
+       unsigned int num_cw = nandc->max_cwperpage;
+       void *bam_txn_buf;
+
+       bam_txn_size =
+               sizeof(*bam_txn) + num_cw *
+               ((sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS) +
+               (sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL) +
+               (sizeof(*bam_txn->data_sgl) * QPIC_PER_CW_DATA_SGL));
+
+       bam_txn_buf = kzalloc(bam_txn_size, GFP_KERNEL);
+       if (!bam_txn_buf)
+               return NULL;
+
+       bam_txn = bam_txn_buf;
+       bam_txn_buf += sizeof(*bam_txn);
+
+       bam_txn->bam_ce = bam_txn_buf;
+       bam_txn_buf +=
+               sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS * num_cw;
+
+       bam_txn->cmd_sgl = bam_txn_buf;
+       bam_txn_buf +=
+               sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL * num_cw;
+
+       bam_txn->data_sgl = bam_txn_buf;
+
+       init_completion(&bam_txn->txn_done);
+
+       return bam_txn;
+}
+
+/*
+ * qcom_clear_bam_transaction: Clears the BAM transaction indexes
+ */
+void qcom_clear_bam_transaction(struct qcom_nand_controller *nandc)
+{
+       struct bam_transaction *bam_txn = nandc->bam_txn;
+
+       if (!nandc->props->is_bam)
+               return;
+
+       bam_txn->bam_ce_pos = 0;
+       bam_txn->bam_ce_start = 0;
+       bam_txn->cmd_sgl_pos = 0;
+       bam_txn->cmd_sgl_start = 0;
+       bam_txn->tx_sgl_pos = 0;
+       bam_txn->tx_sgl_start = 0;
+       bam_txn->rx_sgl_pos = 0;
+       bam_txn->rx_sgl_start = 0;
+       bam_txn->last_data_desc = NULL;
+       bam_txn->wait_second_completion = false;
+
+       sg_init_table(bam_txn->cmd_sgl, nandc->max_cwperpage *
+                     QPIC_PER_CW_CMD_SGL);
+       sg_init_table(bam_txn->data_sgl, nandc->max_cwperpage *
+                     QPIC_PER_CW_DATA_SGL);
+
+       reinit_completion(&bam_txn->txn_done);
+}
+
+/*
+ * qcom_nandc_unalloc: unallocate memory allocated for controller
+ */
+void qcom_nandc_unalloc(struct qcom_nand_controller *nandc)
+{
+       if (nandc->props->is_bam) {
+               if (!dma_mapping_error(nandc->dev, nandc->reg_read_dma))
+                       dma_unmap_single(nandc->dev, nandc->reg_read_dma,
+                                        MAX_REG_RD *
+                                        sizeof(*nandc->reg_read_buf),
+                                        DMA_FROM_DEVICE);
+
+               if (nandc->tx_chan)
+                       dma_release_channel(nandc->tx_chan);
+
+               if (nandc->rx_chan)
+                       dma_release_channel(nandc->rx_chan);
+
+               if (nandc->cmd_chan)
+                       dma_release_channel(nandc->cmd_chan);
+       } else {
+               if (nandc->chan)
+                       dma_release_channel(nandc->chan);
+       }
+}
+
+/*
+ * qcom_nandc_alloc:   Allocate memory for nand controller
+ */
+int qcom_nandc_alloc(struct qcom_nand_controller *nandc)
+{
+       int ret;
+
+       ret = dma_set_coherent_mask(nandc->dev, DMA_BIT_MASK(32));
+       if (ret) {
+               dev_err(nandc->dev, "failed to set DMA mask\n");
+               return ret;
+       }
+
+       /*
+        * we use the internal buffer for reading ONFI params, reading small
+        * data like ID and status, and preforming read-copy-write operations
+        * when writing to a codeword partially. 532 is the maximum possible
+        * size of a codeword for our nand controller
+        */
+       nandc->buf_size = 532;
+
+       nandc->data_buffer = devm_kzalloc(nandc->dev, nandc->buf_size, GFP_KERNEL);
+       if (!nandc->data_buffer)
+               return -ENOMEM;
+
+       nandc->regs = devm_kzalloc(nandc->dev, sizeof(*nandc->regs), GFP_KERNEL);
+       if (!nandc->regs)
+               return -ENOMEM;
+
+       nandc->reg_read_buf = devm_kcalloc(nandc->dev, MAX_REG_RD,
+                                          sizeof(*nandc->reg_read_buf),
+                                          GFP_KERNEL);
+       if (!nandc->reg_read_buf)
+               return -ENOMEM;
+
+       if (nandc->props->is_bam) {
+               nandc->reg_read_dma =
+                       dma_map_single(nandc->dev, nandc->reg_read_buf,
+                                      MAX_REG_RD *
+                                      sizeof(*nandc->reg_read_buf),
+                                      DMA_FROM_DEVICE);
+               if (dma_mapping_error(nandc->dev, nandc->reg_read_dma)) {
+                       dev_err(nandc->dev, "failed to DMA MAP reg buffer\n");
+                       return -EIO;
+               }
+
+               nandc->tx_chan = dma_request_chan(nandc->dev, "tx");
+               if (IS_ERR(nandc->tx_chan)) {
+                       ret = PTR_ERR(nandc->tx_chan);
+                       nandc->tx_chan = NULL;
+                       dev_err_probe(nandc->dev, ret,
+                                     "tx DMA channel request failed\n");
+                       goto unalloc;
+               }
+
+               nandc->rx_chan = dma_request_chan(nandc->dev, "rx");
+               if (IS_ERR(nandc->rx_chan)) {
+                       ret = PTR_ERR(nandc->rx_chan);
+                       nandc->rx_chan = NULL;
+                       dev_err_probe(nandc->dev, ret,
+                                     "rx DMA channel request failed\n");
+                       goto unalloc;
+               }
+
+               nandc->cmd_chan = dma_request_chan(nandc->dev, "cmd");
+               if (IS_ERR(nandc->cmd_chan)) {
+                       ret = PTR_ERR(nandc->cmd_chan);
+                       nandc->cmd_chan = NULL;
+                       dev_err_probe(nandc->dev, ret,
+                                     "cmd DMA channel request failed\n");
+                       goto unalloc;
+               }
+
+               /*
+                * Initially allocate BAM transaction to read ONFI param page.
+                * After detecting all the devices, this BAM transaction will
+                * be freed and the next BAM transaction will be allocated with
+                * maximum codeword size
+                */
+               nandc->max_cwperpage = 1;
+               nandc->bam_txn = qcom_alloc_bam_transaction(nandc);
+               if (!nandc->bam_txn) {
+                       dev_err(nandc->dev,
+                               "failed to allocate bam transaction\n");
+                       ret = -ENOMEM;
+                       goto unalloc;
+               }
+       } else {
+               nandc->chan = dma_request_chan(nandc->dev, "rxtx");
+               if (IS_ERR(nandc->chan)) {
+                       ret = PTR_ERR(nandc->chan);
+                       nandc->chan = NULL;
+                       dev_err_probe(nandc->dev, ret,
+                                     "rxtx DMA channel request failed\n");
+                       return ret;
+               }
+       }
+
+       INIT_LIST_HEAD(&nandc->desc_list);
+       INIT_LIST_HEAD(&nandc->host_list);
+
+       return 0;
+unalloc:
+       qcom_nandc_unalloc(nandc);
+       return ret;
+}
diff --git a/drivers/mtd/nand/raw/qcom_nandc.c b/drivers/mtd/nand/raw/qcom_nandc.c
index b079605c84d3..d4faabc8244f 100644
--- a/drivers/mtd/nand/raw/qcom_nandc.c
+++ b/drivers/mtd/nand/raw/qcom_nandc.c
@@ -2,186 +2,7 @@
  /*
   * Copyright (c) 2016, The Linux Foundation. All rights reserved.
   */
-#include <linux/bitops.h>
-#include <linux/clk.h>
-#include <linux/delay.h>
-#include <linux/dmaengine.h>
-#include <linux/dma-mapping.h>
-#include <linux/dma/qcom_adm.h>
-#include <linux/dma/qcom_bam_dma.h>
-#include <linux/module.h>
-#include <linux/mtd/partitions.h>
-#include <linux/mtd/rawnand.h>
-#include <linux/of.h>
-#include <linux/platform_device.h>
-#include <linux/slab.h>
-
-/* NANDc reg offsets */
-#define        NAND_FLASH_CMD                  0x00
-#define        NAND_ADDR0                      0x04
-#define        NAND_ADDR1                      0x08
-#define        NAND_FLASH_CHIP_SELECT          0x0c
-#define        NAND_EXEC_CMD                   0x10
-#define        NAND_FLASH_STATUS               0x14
-#define        NAND_BUFFER_STATUS              0x18
-#define        NAND_DEV0_CFG0                  0x20
-#define        NAND_DEV0_CFG1                  0x24
-#define        NAND_DEV0_ECC_CFG               0x28
-#define        NAND_AUTO_STATUS_EN             0x2c
-#define        NAND_DEV1_CFG0                  0x30
-#define        NAND_DEV1_CFG1                  0x34
-#define        NAND_READ_ID                    0x40
-#define        NAND_READ_STATUS                0x44
-#define        NAND_DEV_CMD0                   0xa0
-#define        NAND_DEV_CMD1                   0xa4
-#define        NAND_DEV_CMD2                   0xa8
-#define        NAND_DEV_CMD_VLD                0xac
-#define        SFLASHC_BURST_CFG               0xe0
-#define        NAND_ERASED_CW_DETECT_CFG       0xe8
-#define        NAND_ERASED_CW_DETECT_STATUS    0xec
-#define        NAND_EBI2_ECC_BUF_CFG           0xf0
-#define        FLASH_BUF_ACC                   0x100
-
-#define        NAND_CTRL                       0xf00
-#define        NAND_VERSION                    0xf08
-#define        NAND_READ_LOCATION_0            0xf20
-#define        NAND_READ_LOCATION_1            0xf24
-#define        NAND_READ_LOCATION_2            0xf28
-#define        NAND_READ_LOCATION_3            0xf2c
-#define        NAND_READ_LOCATION_LAST_CW_0    0xf40
-#define        NAND_READ_LOCATION_LAST_CW_1    0xf44
-#define        NAND_READ_LOCATION_LAST_CW_2    0xf48
-#define        NAND_READ_LOCATION_LAST_CW_3    0xf4c
-
-/* dummy register offsets, used by write_reg_dma */
-#define        NAND_DEV_CMD1_RESTORE           0xdead
-#define        NAND_DEV_CMD_VLD_RESTORE        0xbeef
-
-/* NAND_FLASH_CMD bits */
-#define        PAGE_ACC                        BIT(4)
-#define        LAST_PAGE                       BIT(5)
-
-/* NAND_FLASH_CHIP_SELECT bits */
-#define        NAND_DEV_SEL                    0
-#define        DM_EN                           BIT(2)
-
-/* NAND_FLASH_STATUS bits */
-#define        FS_OP_ERR                       BIT(4)
-#define        FS_READY_BSY_N                  BIT(5)
-#define        FS_MPU_ERR                      BIT(8)
-#define        FS_DEVICE_STS_ERR               BIT(16)
-#define        FS_DEVICE_WP                    BIT(23)
-
-/* NAND_BUFFER_STATUS bits */
-#define        BS_UNCORRECTABLE_BIT            BIT(8)
-#define        BS_CORRECTABLE_ERR_MSK          0x1f
-
-/* NAND_DEVn_CFG0 bits */
-#define        DISABLE_STATUS_AFTER_WRITE      4
-#define        CW_PER_PAGE                     6
-#define        UD_SIZE_BYTES                   9
-#define        UD_SIZE_BYTES_MASK              GENMASK(18, 9)
-#define        ECC_PARITY_SIZE_BYTES_RS        19
-#define        SPARE_SIZE_BYTES                23
-#define        SPARE_SIZE_BYTES_MASK           GENMASK(26, 23)
-#define        NUM_ADDR_CYCLES                 27
-#define        STATUS_BFR_READ                 30
-#define        SET_RD_MODE_AFTER_STATUS        31
-
-/* NAND_DEVn_CFG0 bits */
-#define        DEV0_CFG1_ECC_DISABLE           0
-#define        WIDE_FLASH                      1
-#define        NAND_RECOVERY_CYCLES            2
-#define        CS_ACTIVE_BSY                   5
-#define        BAD_BLOCK_BYTE_NUM              6
-#define        BAD_BLOCK_IN_SPARE_AREA         16
-#define        WR_RD_BSY_GAP                   17
-#define        ENABLE_BCH_ECC                  27
-
-/* NAND_DEV0_ECC_CFG bits */
-#define        ECC_CFG_ECC_DISABLE             0
-#define        ECC_SW_RESET                    1
-#define        ECC_MODE                        4
-#define        ECC_PARITY_SIZE_BYTES_BCH       8
-#define        ECC_NUM_DATA_BYTES              16
-#define        ECC_NUM_DATA_BYTES_MASK         GENMASK(25, 16)
-#define        ECC_FORCE_CLK_OPEN              30
-
-/* NAND_DEV_CMD1 bits */
-#define        READ_ADDR                       0
-
-/* NAND_DEV_CMD_VLD bits */
-#define        READ_START_VLD                  BIT(0)
-#define        READ_STOP_VLD                   BIT(1)
-#define        WRITE_START_VLD                 BIT(2)
-#define        ERASE_START_VLD                 BIT(3)
-#define        SEQ_READ_START_VLD              BIT(4)
-
-/* NAND_EBI2_ECC_BUF_CFG bits */
-#define        NUM_STEPS                       0
-
-/* NAND_ERASED_CW_DETECT_CFG bits */
-#define        ERASED_CW_ECC_MASK              1
-#define        AUTO_DETECT_RES                 0
-#define        MASK_ECC                        BIT(ERASED_CW_ECC_MASK)
-#define        RESET_ERASED_DET                BIT(AUTO_DETECT_RES)
-#define        ACTIVE_ERASED_DET               (0 << AUTO_DETECT_RES)
-#define        CLR_ERASED_PAGE_DET             (RESET_ERASED_DET | MASK_ECC)
-#define        SET_ERASED_PAGE_DET             (ACTIVE_ERASED_DET | MASK_ECC)
-
-/* NAND_ERASED_CW_DETECT_STATUS bits */
-#define        PAGE_ALL_ERASED                 BIT(7)
-#define        CODEWORD_ALL_ERASED             BIT(6)
-#define        PAGE_ERASED                     BIT(5)
-#define        CODEWORD_ERASED                 BIT(4)
-#define        ERASED_PAGE                     (PAGE_ALL_ERASED | PAGE_ERASED)
-#define        ERASED_CW                       (CODEWORD_ALL_ERASED | CODEWORD_ERASED)
-
-/* NAND_READ_LOCATION_n bits */
-#define READ_LOCATION_OFFSET           0
-#define READ_LOCATION_SIZE             16
-#define READ_LOCATION_LAST             31
-
-/* Version Mask */
-#define        NAND_VERSION_MAJOR_MASK         0xf0000000
-#define        NAND_VERSION_MAJOR_SHIFT        28
-#define        NAND_VERSION_MINOR_MASK         0x0fff0000
-#define        NAND_VERSION_MINOR_SHIFT        16
-
-/* NAND OP_CMDs */
-#define        OP_PAGE_READ                    0x2
-#define        OP_PAGE_READ_WITH_ECC           0x3
-#define        OP_PAGE_READ_WITH_ECC_SPARE     0x4
-#define        OP_PAGE_READ_ONFI_READ          0x5
-#define        OP_PROGRAM_PAGE                 0x6
-#define        OP_PAGE_PROGRAM_WITH_ECC        0x7
-#define        OP_PROGRAM_PAGE_SPARE           0x9
-#define        OP_BLOCK_ERASE                  0xa
-#define        OP_CHECK_STATUS                 0xc
-#define        OP_FETCH_ID                     0xb
-#define        OP_RESET_DEVICE                 0xd
-
-/* Default Value for NAND_DEV_CMD_VLD */
-#define NAND_DEV_CMD_VLD_VAL           (READ_START_VLD | WRITE_START_VLD | \
-                                        ERASE_START_VLD | SEQ_READ_START_VLD)
-
-/* NAND_CTRL bits */
-#define        BAM_MODE_EN                     BIT(0)
-
-/*
- * the NAND controller performs reads/writes with ECC in 516 byte chunks.
- * the driver calls the chunks 'step' or 'codeword' interchangeably
- */
-#define        NANDC_STEP_SIZE                 512
-
-/*
- * the largest page size we support is 8K, this will have 16 steps/codewords
- * of 512 bytes each
- */
-#define        MAX_NUM_STEPS                   (SZ_8K / NANDC_STEP_SIZE)
-
-/* we read at most 3 registers per codeword scan */
-#define        MAX_REG_RD                      (3 * MAX_NUM_STEPS)
+#include <linux/mtd/nand-qpic-common.h>

  /* ECC modes supported by the controller */
  #define        ECC_NONE        BIT(0)
@@ -200,247 +21,6 @@ nandc_set_reg(chip, reg,                   \
               ((cw_offset) << READ_LOCATION_OFFSET) |           \
               ((read_size) << READ_LOCATION_SIZE) |                     \
               ((is_last_read_loc) << READ_LOCATION_LAST))
-/*
- * Returns the actual register address for all NAND_DEV_ registers
- * (i.e. NAND_DEV_CMD0, NAND_DEV_CMD1, NAND_DEV_CMD2 and NAND_DEV_CMD_VLD)
- */
-#define dev_cmd_reg_addr(nandc, reg) ((nandc)->props->dev_cmd_reg_start + (reg))
-
-/* Returns the NAND register physical address */
-#define nandc_reg_phys(chip, offset) ((chip)->base_phys + (offset))
-
-/* Returns the dma address for reg read buffer */
-#define reg_buf_dma_addr(chip, vaddr) \
-       ((chip)->reg_read_dma + \
-       ((u8 *)(vaddr) - (u8 *)(chip)->reg_read_buf))
-
-#define QPIC_PER_CW_CMD_ELEMENTS       32
-#define QPIC_PER_CW_CMD_SGL            32
-#define QPIC_PER_CW_DATA_SGL           8
-
-#define QPIC_NAND_COMPLETION_TIMEOUT   msecs_to_jiffies(2000)
-
-/*
- * Flags used in DMA descriptor preparation helper functions
- * (i.e. read_reg_dma/write_reg_dma/read_data_dma/write_data_dma)
- */
-/* Don't set the EOT in current tx BAM sgl */
-#define NAND_BAM_NO_EOT                        BIT(0)
-/* Set the NWD flag in current BAM sgl */
-#define NAND_BAM_NWD                   BIT(1)
-/* Finish writing in the current BAM sgl and start writing in another BAM sgl */
-#define NAND_BAM_NEXT_SGL              BIT(2)
-/*
- * Erased codeword status is being used two times in single transfer so this
- * flag will determine the current value of erased codeword status register
- */
-#define NAND_ERASED_CW_SET             BIT(4)
-
-#define MAX_ADDRESS_CYCLE              5
-
-/*
- * This data type corresponds to the BAM transaction which will be used for all
- * NAND transfers.
- * @bam_ce - the array of BAM command elements
- * @cmd_sgl - sgl for NAND BAM command pipe
- * @data_sgl - sgl for NAND BAM consumer/producer pipe
- * @last_data_desc - last DMA desc in data channel (tx/rx).
- * @last_cmd_desc - last DMA desc in command channel.
- * @txn_done - completion for NAND transfer.
- * @bam_ce_pos - the index in bam_ce which is available for next sgl
- * @bam_ce_start - the index in bam_ce which marks the start position ce
- *                for current sgl. It will be used for size calculation
- *                for current sgl
- * @cmd_sgl_pos - current index in command sgl.
- * @cmd_sgl_start - start index in command sgl.
- * @tx_sgl_pos - current index in data sgl for tx.
- * @tx_sgl_start - start index in data sgl for tx.
- * @rx_sgl_pos - current index in data sgl for rx.
- * @rx_sgl_start - start index in data sgl for rx.
- * @wait_second_completion - wait for second DMA desc completion before making
- *                          the NAND transfer completion.
- */
-struct bam_transaction {
-       struct bam_cmd_element *bam_ce;
-       struct scatterlist *cmd_sgl;
-       struct scatterlist *data_sgl;
-       struct dma_async_tx_descriptor *last_data_desc;
-       struct dma_async_tx_descriptor *last_cmd_desc;
-       struct completion txn_done;
-       u32 bam_ce_pos;
-       u32 bam_ce_start;
-       u32 cmd_sgl_pos;
-       u32 cmd_sgl_start;
-       u32 tx_sgl_pos;
-       u32 tx_sgl_start;
-       u32 rx_sgl_pos;
-       u32 rx_sgl_start;
-       bool wait_second_completion;
-};
-
-/*
- * This data type corresponds to the nand dma descriptor
- * @dma_desc - low level DMA engine descriptor
- * @list - list for desc_info
- *
- * @adm_sgl - sgl which will be used for single sgl dma descriptor. Only used by
- *           ADM
- * @bam_sgl - sgl which will be used for dma descriptor. Only used by BAM
- * @sgl_cnt - number of SGL in bam_sgl. Only used by BAM
- * @dir - DMA transfer direction
- */
-struct desc_info {
-       struct dma_async_tx_descriptor *dma_desc;
-       struct list_head node;
-
-       union {
-               struct scatterlist adm_sgl;
-               struct {
-                       struct scatterlist *bam_sgl;
-                       int sgl_cnt;
-               };
-       };
-       enum dma_data_direction dir;
-};
-
-/*
- * holds the current register values that we want to write. acts as a contiguous
- * chunk of memory which we use to write the controller registers through DMA.
- */
-struct nandc_regs {
-       __le32 cmd;
-       __le32 addr0;
-       __le32 addr1;
-       __le32 chip_sel;
-       __le32 exec;
-
-       __le32 cfg0;
-       __le32 cfg1;
-       __le32 ecc_bch_cfg;
-
-       __le32 clrflashstatus;
-       __le32 clrreadstatus;
-
-       __le32 cmd1;
-       __le32 vld;
-
-       __le32 orig_cmd1;
-       __le32 orig_vld;
-
-       __le32 ecc_buf_cfg;
-       __le32 read_location0;
-       __le32 read_location1;
-       __le32 read_location2;
-       __le32 read_location3;
-       __le32 read_location_last0;
-       __le32 read_location_last1;
-       __le32 read_location_last2;
-       __le32 read_location_last3;
-
-       __le32 erased_cw_detect_cfg_clr;
-       __le32 erased_cw_detect_cfg_set;
-};
-
-/*
- * NAND controller data struct
- *
- * @dev:                       parent device
- *
- * @base:                      MMIO base
- *
- * @core_clk:                  controller clock
- * @aon_clk:                   another controller clock
- *
- * @regs:                      a contiguous chunk of memory for DMA register
- *                             writes. contains the register values to be
- *                             written to controller
- *
- * @props:                     properties of current NAND controller,
- *                             initialized via DT match data
- *
- * @controller:                        base controller structure
- * @host_list:                 list containing all the chips attached to the
- *                             controller
- *
- * @chan:                      dma channel
- * @cmd_crci:                  ADM DMA CRCI for command flow control
- * @data_crci:                 ADM DMA CRCI for data flow control
- *
- * @desc_list:                 DMA descriptor list (list of desc_infos)
- *
- * @data_buffer:               our local DMA buffer for page read/writes,
- *                             used when we can't use the buffer provided
- *                             by upper layers directly
- * @reg_read_buf:              local buffer for reading back registers via DMA
- *
- * @base_phys:                 physical base address of controller registers
- * @base_dma:                  dma base address of controller registers
- * @reg_read_dma:              contains dma address for register read buffer
- *
- * @buf_size/count/start:      markers for chip->legacy.read_buf/write_buf
- *                             functions
- * @max_cwperpage:             maximum QPIC codewords required. calculated
- *                             from all connected NAND devices pagesize
- *
- * @reg_read_pos:              marker for data read in reg_read_buf
- *
- * @cmd1/vld:                  some fixed controller register values
- *
- * @exec_opwrite:              flag to select correct number of code word
- *                             while reading status
- */
-struct qcom_nand_controller {
-       struct device *dev;
-
-       void __iomem *base;
-
-       struct clk *core_clk;
-       struct clk *aon_clk;
-
-       struct nandc_regs *regs;
-       struct bam_transaction *bam_txn;
-
-       const struct qcom_nandc_props *props;
-
-       struct nand_controller controller;
-       struct list_head host_list;
-
-       union {
-               /* will be used only by QPIC for BAM DMA */
-               struct {
-                       struct dma_chan *tx_chan;
-                       struct dma_chan *rx_chan;
-                       struct dma_chan *cmd_chan;
-               };
-
-               /* will be used only by EBI2 for ADM DMA */
-               struct {
-                       struct dma_chan *chan;
-                       unsigned int cmd_crci;
-                       unsigned int data_crci;
-               };
-       };
-
-       struct list_head desc_list;
-
-       u8              *data_buffer;
-       __le32          *reg_read_buf;
-
-       phys_addr_t base_phys;
-       dma_addr_t base_dma;
-       dma_addr_t reg_read_dma;
-
-       int             buf_size;
-       int             buf_count;
-       int             buf_start;
-       unsigned int    max_cwperpage;
-
-       int reg_read_pos;
-
-       u32 cmd1, vld;
-       bool exec_opwrite;
-};
-
  /*
   * NAND special boot partitions
   *
@@ -544,113 +124,24 @@ struct qcom_nand_host {
         bool bch_enabled;
  };

-/*
- * This data type corresponds to the NAND controller properties which varies
- * among different NAND controllers.
- * @ecc_modes - ecc mode for NAND
- * @dev_cmd_reg_start - NAND_DEV_CMD_* registers starting offset
- * @is_bam - whether NAND controller is using BAM
- * @is_qpic - whether NAND CTRL is part of qpic IP
- * @qpic_v2 - flag to indicate QPIC IP version 2
- * @use_codeword_fixup - whether NAND has different layout for boot partitions
- */
-struct qcom_nandc_props {
-       u32 ecc_modes;
-       u32 dev_cmd_reg_start;
-       bool is_bam;
-       bool is_qpic;
-       bool qpic_v2;
-       bool use_codeword_fixup;
-};
-
-/* Frees the BAM transaction memory */
-static void free_bam_transaction(struct qcom_nand_controller *nandc)
-{
-       struct bam_transaction *bam_txn = nandc->bam_txn;
-
-       devm_kfree(nandc->dev, bam_txn);
-}
-
-/* Allocates and Initializes the BAM transaction */
-static struct bam_transaction *
-alloc_bam_transaction(struct qcom_nand_controller *nandc)
+struct qcom_nand_controller *
+get_qcom_nand_controller(struct nand_chip *chip)
  {
-       struct bam_transaction *bam_txn;
-       size_t bam_txn_size;
-       unsigned int num_cw = nandc->max_cwperpage;
-       void *bam_txn_buf;
-
-       bam_txn_size =
-               sizeof(*bam_txn) + num_cw *
-               ((sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS) +
-               (sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL) +
-               (sizeof(*bam_txn->data_sgl) * QPIC_PER_CW_DATA_SGL));
-
-       bam_txn_buf = devm_kzalloc(nandc->dev, bam_txn_size, GFP_KERNEL);
-       if (!bam_txn_buf)
-               return NULL;
-
-       bam_txn = bam_txn_buf;
-       bam_txn_buf += sizeof(*bam_txn);
-
-       bam_txn->bam_ce = bam_txn_buf;
-       bam_txn_buf +=
-               sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS * num_cw;
-
-       bam_txn->cmd_sgl = bam_txn_buf;
-       bam_txn_buf +=
-               sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL * num_cw;
-
-       bam_txn->data_sgl = bam_txn_buf;
-
-       init_completion(&bam_txn->txn_done);
-
-       return bam_txn;
+       return container_of(chip->controller, struct qcom_nand_controller,
+                           controller);
  }

-/* Clears the BAM transaction indexes */
-static void clear_bam_transaction(struct qcom_nand_controller *nandc)
+static void nandc_set_reg(struct nand_chip *chip, int offset,
+                         u32 val)
  {
-       struct bam_transaction *bam_txn = nandc->bam_txn;
-
-       if (!nandc->props->is_bam)
-               return;
-
-       bam_txn->bam_ce_pos = 0;
-       bam_txn->bam_ce_start = 0;
-       bam_txn->cmd_sgl_pos = 0;
-       bam_txn->cmd_sgl_start = 0;
-       bam_txn->tx_sgl_pos = 0;
-       bam_txn->tx_sgl_start = 0;
-       bam_txn->rx_sgl_pos = 0;
-       bam_txn->rx_sgl_start = 0;
-       bam_txn->last_data_desc = NULL;
-       bam_txn->wait_second_completion = false;
-
-       sg_init_table(bam_txn->cmd_sgl, nandc->max_cwperpage *
-                     QPIC_PER_CW_CMD_SGL);
-       sg_init_table(bam_txn->data_sgl, nandc->max_cwperpage *
-                     QPIC_PER_CW_DATA_SGL);
-
-       reinit_completion(&bam_txn->txn_done);
-}
+       struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
+       struct nandc_regs *regs = nandc->regs;
+       __le32 *reg;

-/* Callback for DMA descriptor completion */
-static void qpic_bam_dma_done(void *data)
-{
-       struct bam_transaction *bam_txn = data;
+       reg = qcom_offset_to_nandc_reg(regs, offset);

-       /*
-        * In case of data transfer with NAND, 2 callbacks will be generated.
-        * One for command channel and another one for data channel.
-        * If current transaction has data descriptors
-        * (i.e. wait_second_completion is true), then set this to false
-        * and wait for second DMA descriptor completion.
-        */
-       if (bam_txn->wait_second_completion)
-               bam_txn->wait_second_completion = false;
-       else
-               complete(&bam_txn->txn_done);
+       if (reg)
+               *reg = cpu_to_le32(val);
  }

  static inline struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip)
@@ -658,13 +149,6 @@ static inline struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip)
         return container_of(chip, struct qcom_nand_host, chip);
  }

-static inline struct qcom_nand_controller *
-get_qcom_nand_controller(struct nand_chip *chip)
-{
-       return container_of(chip->controller, struct qcom_nand_controller,
-                           controller);
-}
-
  static inline u32 nandc_read(struct qcom_nand_controller *nandc, int offset)
  {
         return ioread32(nandc->base + offset);
@@ -676,91 +160,6 @@ static inline void nandc_write(struct qcom_nand_controller *nandc, int offset,
         iowrite32(val, nandc->base + offset);
  }

-static inline void nandc_read_buffer_sync(struct qcom_nand_controller *nandc,
-                                         bool is_cpu)
-{
-       if (!nandc->props->is_bam)
-               return;
-
-       if (is_cpu)
-               dma_sync_single_for_cpu(nandc->dev, nandc->reg_read_dma,
-                                       MAX_REG_RD *
-                                       sizeof(*nandc->reg_read_buf),
-                                       DMA_FROM_DEVICE);
-       else
-               dma_sync_single_for_device(nandc->dev, nandc->reg_read_dma,
-                                          MAX_REG_RD *
-                                          sizeof(*nandc->reg_read_buf),
-                                          DMA_FROM_DEVICE);
-}
-
-static __le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset)
-{
-       switch (offset) {
-       case NAND_FLASH_CMD:
-               return &regs->cmd;
-       case NAND_ADDR0:
-               return &regs->addr0;
-       case NAND_ADDR1:
-               return &regs->addr1;
-       case NAND_FLASH_CHIP_SELECT:
-               return &regs->chip_sel;
-       case NAND_EXEC_CMD:
-               return &regs->exec;
-       case NAND_FLASH_STATUS:
-               return &regs->clrflashstatus;
-       case NAND_DEV0_CFG0:
-               return &regs->cfg0;
-       case NAND_DEV0_CFG1:
-               return &regs->cfg1;
-       case NAND_DEV0_ECC_CFG:
-               return &regs->ecc_bch_cfg;
-       case NAND_READ_STATUS:
-               return &regs->clrreadstatus;
-       case NAND_DEV_CMD1:
-               return &regs->cmd1;
-       case NAND_DEV_CMD1_RESTORE:
-               return &regs->orig_cmd1;
-       case NAND_DEV_CMD_VLD:
-               return &regs->vld;
-       case NAND_DEV_CMD_VLD_RESTORE:
-               return &regs->orig_vld;
-       case NAND_EBI2_ECC_BUF_CFG:
-               return &regs->ecc_buf_cfg;
-       case NAND_READ_LOCATION_0:
-               return &regs->read_location0;
-       case NAND_READ_LOCATION_1:
-               return &regs->read_location1;
-       case NAND_READ_LOCATION_2:
-               return &regs->read_location2;
-       case NAND_READ_LOCATION_3:
-               return &regs->read_location3;
-       case NAND_READ_LOCATION_LAST_CW_0:
-               return &regs->read_location_last0;
-       case NAND_READ_LOCATION_LAST_CW_1:
-               return &regs->read_location_last1;
-       case NAND_READ_LOCATION_LAST_CW_2:
-               return &regs->read_location_last2;
-       case NAND_READ_LOCATION_LAST_CW_3:
-               return &regs->read_location_last3;
-       default:
-               return NULL;
-       }
-}
-
-static void nandc_set_reg(struct nand_chip *chip, int offset,
-                         u32 val)
-{
-       struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
-       struct nandc_regs *regs = nandc->regs;
-       __le32 *reg;
-
-       reg = offset_to_nandc_reg(regs, offset);
-
-       if (reg)
-               *reg = cpu_to_le32(val);
-}
-
  /* Helper to check the code word, whether it is last cw or not */
  static bool qcom_nandc_is_last_cw(struct nand_ecc_ctrl *ecc, int cw)
  {
@@ -852,383 +251,6 @@ static void update_rw_regs(struct qcom_nand_host *host, int num_cw, bool read, i
                                    host->cw_data : host->cw_size, 1);
  }

-/*
- * Maps the scatter gather list for DMA transfer and forms the DMA descriptor
- * for BAM. This descriptor will be added in the NAND DMA descriptor queue
- * which will be submitted to DMA engine.
- */
-static int prepare_bam_async_desc(struct qcom_nand_controller *nandc,
-                                 struct dma_chan *chan,
-                                 unsigned long flags)
-{
-       struct desc_info *desc;
-       struct scatterlist *sgl;
-       unsigned int sgl_cnt;
-       int ret;
-       struct bam_transaction *bam_txn = nandc->bam_txn;
-       enum dma_transfer_direction dir_eng;
-       struct dma_async_tx_descriptor *dma_desc;
-
-       desc = kzalloc(sizeof(*desc), GFP_KERNEL);
-       if (!desc)
-               return -ENOMEM;
-
-       if (chan == nandc->cmd_chan) {
-               sgl = &bam_txn->cmd_sgl[bam_txn->cmd_sgl_start];
-               sgl_cnt = bam_txn->cmd_sgl_pos - bam_txn->cmd_sgl_start;
-               bam_txn->cmd_sgl_start = bam_txn->cmd_sgl_pos;
-               dir_eng = DMA_MEM_TO_DEV;
-               desc->dir = DMA_TO_DEVICE;
-       } else if (chan == nandc->tx_chan) {
-               sgl = &bam_txn->data_sgl[bam_txn->tx_sgl_start];
-               sgl_cnt = bam_txn->tx_sgl_pos - bam_txn->tx_sgl_start;
-               bam_txn->tx_sgl_start = bam_txn->tx_sgl_pos;
-               dir_eng = DMA_MEM_TO_DEV;
-               desc->dir = DMA_TO_DEVICE;
-       } else {
-               sgl = &bam_txn->data_sgl[bam_txn->rx_sgl_start];
-               sgl_cnt = bam_txn->rx_sgl_pos - bam_txn->rx_sgl_start;
-               bam_txn->rx_sgl_start = bam_txn->rx_sgl_pos;
-               dir_eng = DMA_DEV_TO_MEM;
-               desc->dir = DMA_FROM_DEVICE;
-       }
-
-       sg_mark_end(sgl + sgl_cnt - 1);
-       ret = dma_map_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
-       if (ret == 0) {
-               dev_err(nandc->dev, "failure in mapping desc\n");
-               kfree(desc);
-               return -ENOMEM;
-       }
-
-       desc->sgl_cnt = sgl_cnt;
-       desc->bam_sgl = sgl;
-
-       dma_desc = dmaengine_prep_slave_sg(chan, sgl, sgl_cnt, dir_eng,
-                                          flags);
-
-       if (!dma_desc) {
-               dev_err(nandc->dev, "failure in prep desc\n");
-               dma_unmap_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
-               kfree(desc);
-               return -EINVAL;
-       }
-
-       desc->dma_desc = dma_desc;
-
-       /* update last data/command descriptor */
-       if (chan == nandc->cmd_chan)
-               bam_txn->last_cmd_desc = dma_desc;
-       else
-               bam_txn->last_data_desc = dma_desc;
-
-       list_add_tail(&desc->node, &nandc->desc_list);
-
-       return 0;
-}
-
-/*
- * Prepares the command descriptor for BAM DMA which will be used for NAND
- * register reads and writes. The command descriptor requires the command
- * to be formed in command element type so this function uses the command
- * element from bam transaction ce array and fills the same with required
- * data. A single SGL can contain multiple command elements so
- * NAND_BAM_NEXT_SGL will be used for starting the separate SGL
- * after the current command element.
- */
-static int prep_bam_dma_desc_cmd(struct qcom_nand_controller *nandc, bool read,
-                                int reg_off, const void *vaddr,
-                                int size, unsigned int flags)
-{
-       int bam_ce_size;
-       int i, ret;
-       struct bam_cmd_element *bam_ce_buffer;
-       struct bam_transaction *bam_txn = nandc->bam_txn;
-
-       bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_pos];
-
-       /* fill the command desc */
-       for (i = 0; i < size; i++) {
-               if (read)
-                       bam_prep_ce(&bam_ce_buffer[i],
-                                   nandc_reg_phys(nandc, reg_off + 4 * i),
-                                   BAM_READ_COMMAND,
-                                   reg_buf_dma_addr(nandc,
-                                                    (__le32 *)vaddr + i));
-               else
-                       bam_prep_ce_le32(&bam_ce_buffer[i],
-                                        nandc_reg_phys(nandc, reg_off + 4 * i),
-                                        BAM_WRITE_COMMAND,
-                                        *((__le32 *)vaddr + i));
-       }
-
-       bam_txn->bam_ce_pos += size;
-
-       /* use the separate sgl after this command */
-       if (flags & NAND_BAM_NEXT_SGL) {
-               bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_start];
-               bam_ce_size = (bam_txn->bam_ce_pos -
-                               bam_txn->bam_ce_start) *
-                               sizeof(struct bam_cmd_element);
-               sg_set_buf(&bam_txn->cmd_sgl[bam_txn->cmd_sgl_pos],
-                          bam_ce_buffer, bam_ce_size);
-               bam_txn->cmd_sgl_pos++;
-               bam_txn->bam_ce_start = bam_txn->bam_ce_pos;
-
-               if (flags & NAND_BAM_NWD) {
-                       ret = prepare_bam_async_desc(nandc, nandc->cmd_chan,
-                                                    DMA_PREP_FENCE |
-                                                    DMA_PREP_CMD);
-                       if (ret)
-                               return ret;
-               }
-       }
-
-       return 0;
-}
-
-/*
- * Prepares the data descriptor for BAM DMA which will be used for NAND
- * data reads and writes.
- */
-static int prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read,
-                                 const void *vaddr,
-                                 int size, unsigned int flags)
-{
-       int ret;
-       struct bam_transaction *bam_txn = nandc->bam_txn;
-
-       if (read) {
-               sg_set_buf(&bam_txn->data_sgl[bam_txn->rx_sgl_pos],
-                          vaddr, size);
-               bam_txn->rx_sgl_pos++;
-       } else {
-               sg_set_buf(&bam_txn->data_sgl[bam_txn->tx_sgl_pos],
-                          vaddr, size);
-               bam_txn->tx_sgl_pos++;
-
-               /*
-                * BAM will only set EOT for DMA_PREP_INTERRUPT so if this flag
-                * is not set, form the DMA descriptor
-                */
-               if (!(flags & NAND_BAM_NO_EOT)) {
-                       ret = prepare_bam_async_desc(nandc, nandc->tx_chan,
-                                                    DMA_PREP_INTERRUPT);
-                       if (ret)
-                               return ret;
-               }
-       }
-
-       return 0;
-}
-
-static int prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read,
-                            int reg_off, const void *vaddr, int size,
-                            bool flow_control)
-{
-       struct desc_info *desc;
-       struct dma_async_tx_descriptor *dma_desc;
-       struct scatterlist *sgl;
-       struct dma_slave_config slave_conf;
-       struct qcom_adm_peripheral_config periph_conf = {};
-       enum dma_transfer_direction dir_eng;
-       int ret;
-
-       desc = kzalloc(sizeof(*desc), GFP_KERNEL);
-       if (!desc)
-               return -ENOMEM;
-
-       sgl = &desc->adm_sgl;
-
-       sg_init_one(sgl, vaddr, size);
-
-       if (read) {
-               dir_eng = DMA_DEV_TO_MEM;
-               desc->dir = DMA_FROM_DEVICE;
-       } else {
-               dir_eng = DMA_MEM_TO_DEV;
-               desc->dir = DMA_TO_DEVICE;
-       }
-
-       ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir);
-       if (ret == 0) {
-               ret = -ENOMEM;
-               goto err;
-       }
-
-       memset(&slave_conf, 0x00, sizeof(slave_conf));
-
-       slave_conf.device_fc = flow_control;
-       if (read) {
-               slave_conf.src_maxburst = 16;
-               slave_conf.src_addr = nandc->base_dma + reg_off;
-               if (nandc->data_crci) {
-                       periph_conf.crci = nandc->data_crci;
-                       slave_conf.peripheral_config = &periph_conf;
-                       slave_conf.peripheral_size = sizeof(periph_conf);
-               }
-       } else {
-               slave_conf.dst_maxburst = 16;
-               slave_conf.dst_addr = nandc->base_dma + reg_off;
-               if (nandc->cmd_crci) {
-                       periph_conf.crci = nandc->cmd_crci;
-                       slave_conf.peripheral_config = &periph_conf;
-                       slave_conf.peripheral_size = sizeof(periph_conf);
-               }
-       }
-
-       ret = dmaengine_slave_config(nandc->chan, &slave_conf);
-       if (ret) {
-               dev_err(nandc->dev, "failed to configure dma channel\n");
-               goto err;
-       }
-
-       dma_desc = dmaengine_prep_slave_sg(nandc->chan, sgl, 1, dir_eng, 0);
-       if (!dma_desc) {
-               dev_err(nandc->dev, "failed to prepare desc\n");
-               ret = -EINVAL;
-               goto err;
-       }
-
-       desc->dma_desc = dma_desc;
-
-       list_add_tail(&desc->node, &nandc->desc_list);
-
-       return 0;
-err:
-       kfree(desc);
-
-       return ret;
-}
-
-/*
- * read_reg_dma:       prepares a descriptor to read a given number of
- *                     contiguous registers to the reg_read_buf pointer
- *
- * @first:             offset of the first register in the contiguous block
- * @num_regs:          number of registers to read
- * @flags:             flags to control DMA descriptor preparation
- */
-static int read_reg_dma(struct qcom_nand_controller *nandc, int first,
-                       int num_regs, unsigned int flags)
-{
-       bool flow_control = false;
-       void *vaddr;
-
-       vaddr = nandc->reg_read_buf + nandc->reg_read_pos;
-       nandc->reg_read_pos += num_regs;
-
-       if (first == NAND_DEV_CMD_VLD || first == NAND_DEV_CMD1)
-               first = dev_cmd_reg_addr(nandc, first);
-
-       if (nandc->props->is_bam)
-               return prep_bam_dma_desc_cmd(nandc, true, first, vaddr,
-                                            num_regs, flags);
-
-       if (first == NAND_READ_ID || first == NAND_FLASH_STATUS)
-               flow_control = true;
-
-       return prep_adm_dma_desc(nandc, true, first, vaddr,
-                                num_regs * sizeof(u32), flow_control);
-}
-
-/*
- * write_reg_dma:      prepares a descriptor to write a given number of
- *                     contiguous registers
- *
- * @first:             offset of the first register in the contiguous block
- * @num_regs:          number of registers to write
- * @flags:             flags to control DMA descriptor preparation
- */
-static int write_reg_dma(struct qcom_nand_controller *nandc, int first,
-                        int num_regs, unsigned int flags)
-{
-       bool flow_control = false;
-       struct nandc_regs *regs = nandc->regs;
-       void *vaddr;
-
-       vaddr = offset_to_nandc_reg(regs, first);
-
-       if (first == NAND_ERASED_CW_DETECT_CFG) {
-               if (flags & NAND_ERASED_CW_SET)
-                       vaddr = &regs->erased_cw_detect_cfg_set;
-               else
-                       vaddr = &regs->erased_cw_detect_cfg_clr;
-       }
-
-       if (first == NAND_EXEC_CMD)
-               flags |= NAND_BAM_NWD;
-
-       if (first == NAND_DEV_CMD1_RESTORE || first == NAND_DEV_CMD1)
-               first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD1);
-
-       if (first == NAND_DEV_CMD_VLD_RESTORE || first == NAND_DEV_CMD_VLD)
-               first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD);
-
-       if (nandc->props->is_bam)
-               return prep_bam_dma_desc_cmd(nandc, false, first, vaddr,
-                                            num_regs, flags);
-
-       if (first == NAND_FLASH_CMD)
-               flow_control = true;
-
-       return prep_adm_dma_desc(nandc, false, first, vaddr,
-                                num_regs * sizeof(u32), flow_control);
-}
-
-/*
- * read_data_dma:      prepares a DMA descriptor to transfer data from the
- *                     controller's internal buffer to the buffer 'vaddr'
- *
- * @reg_off:           offset within the controller's data buffer
- * @vaddr:             virtual address of the buffer we want to write to
- * @size:              DMA transaction size in bytes
- * @flags:             flags to control DMA descriptor preparation
- */
-static int read_data_dma(struct qcom_nand_controller *nandc, int reg_off,
-                        const u8 *vaddr, int size, unsigned int flags)
-{
-       if (nandc->props->is_bam)
-               return prep_bam_dma_desc_data(nandc, true, vaddr, size, flags);
-
-       return prep_adm_dma_desc(nandc, true, reg_off, vaddr, size, false);
-}
-
-/*
- * write_data_dma:     prepares a DMA descriptor to transfer data from
- *                     'vaddr' to the controller's internal buffer
- *
- * @reg_off:           offset within the controller's data buffer
- * @vaddr:             virtual address of the buffer we want to read from
- * @size:              DMA transaction size in bytes
- * @flags:             flags to control DMA descriptor preparation
- */
-static int write_data_dma(struct qcom_nand_controller *nandc, int reg_off,
-                         const u8 *vaddr, int size, unsigned int flags)
-{
-       if (nandc->props->is_bam)
-               return prep_bam_dma_desc_data(nandc, false, vaddr, size, flags);
-
-       return prep_adm_dma_desc(nandc, false, reg_off, vaddr, size, false);
-}
-
-/*
- * Helper to prepare DMA descriptors for configuring registers
- * before reading a NAND page.
- */
-static void config_nand_page_read(struct nand_chip *chip)
-{
-       struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
-
-       write_reg_dma(nandc, NAND_ADDR0, 2, 0);
-       write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
-       if (!nandc->props->qpic_v2)
-               write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, 0);
-       write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, 0);
-       write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1,
-                     NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL);
-}
-
  /*
   * Helper to prepare DMA descriptors for configuring registers
   * before reading each codeword in NAND page.
@@ -1245,20 +267,37 @@ config_nand_cw_read(struct nand_chip *chip, bool use_ecc, int cw)
                 reg = NAND_READ_LOCATION_LAST_CW_0;

         if (nandc->props->is_bam)
-               write_reg_dma(nandc, reg, 4, NAND_BAM_NEXT_SGL);
+               qcom_write_reg_dma(nandc, reg, 4, NAND_BAM_NEXT_SGL);

-       write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
-       write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
+       qcom_write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
+       qcom_write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);

         if (use_ecc) {
-               read_reg_dma(nandc, NAND_FLASH_STATUS, 2, 0);
-               read_reg_dma(nandc, NAND_ERASED_CW_DETECT_STATUS, 1,
-                            NAND_BAM_NEXT_SGL);
+               qcom_read_reg_dma(nandc, NAND_FLASH_STATUS, 2, 0);
+               qcom_read_reg_dma(nandc, NAND_ERASED_CW_DETECT_STATUS, 1,
+                                 NAND_BAM_NEXT_SGL);
         } else {
-               read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
+               qcom_read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
         }
  }

+/*
+ * Helper to prepare DMA descriptors for configuring registers
+ * before reading a NAND page.
+ */
+void config_nand_page_read(struct nand_chip *chip)
+{
+       struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
+
+       qcom_write_reg_dma(nandc, NAND_ADDR0, 2, 0);
+       qcom_write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
+       if (!nandc->props->qpic_v2)
+               qcom_write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, 0);
+       qcom_write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, 0);
+       qcom_write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1,
+                          NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL);
+}
+
  /*
   * Helper to prepare dma descriptors to configure registers needed for reading a
   * single codeword in page
@@ -1279,11 +318,11 @@ static void config_nand_page_write(struct nand_chip *chip)
  {
         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);

-       write_reg_dma(nandc, NAND_ADDR0, 2, 0);
-       write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
+       qcom_write_reg_dma(nandc, NAND_ADDR0, 2, 0);
+       qcom_write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
         if (!nandc->props->qpic_v2)
-               write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1,
-                             NAND_BAM_NEXT_SGL);
+               qcom_write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1,
+                                  NAND_BAM_NEXT_SGL);
  }

  /*
@@ -1294,95 +333,13 @@ static void config_nand_cw_write(struct nand_chip *chip)
  {
         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);

-       write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
-       write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
+       qcom_write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
+       qcom_write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);

-       read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
+       qcom_read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);

-       write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0);
-       write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL);
-}
-
-/* helpers to submit/free our list of dma descriptors */
-static int submit_descs(struct qcom_nand_controller *nandc)
-{
-       struct desc_info *desc, *n;
-       dma_cookie_t cookie = 0;
-       struct bam_transaction *bam_txn = nandc->bam_txn;
-       int ret = 0;
-
-       if (nandc->props->is_bam) {
-               if (bam_txn->rx_sgl_pos > bam_txn->rx_sgl_start) {
-                       ret = prepare_bam_async_desc(nandc, nandc->rx_chan, 0);
-                       if (ret)
-                               goto err_unmap_free_desc;
-               }
-
-               if (bam_txn->tx_sgl_pos > bam_txn->tx_sgl_start) {
-                       ret = prepare_bam_async_desc(nandc, nandc->tx_chan,
-                                                  DMA_PREP_INTERRUPT);
-                       if (ret)
-                               goto err_unmap_free_desc;
-               }
-
-               if (bam_txn->cmd_sgl_pos > bam_txn->cmd_sgl_start) {
-                       ret = prepare_bam_async_desc(nandc, nandc->cmd_chan,
-                                                  DMA_PREP_CMD);
-                       if (ret)
-                               goto err_unmap_free_desc;
-               }
-       }
-
-       list_for_each_entry(desc, &nandc->desc_list, node)
-               cookie = dmaengine_submit(desc->dma_desc);
-
-       if (nandc->props->is_bam) {
-               bam_txn->last_cmd_desc->callback = qpic_bam_dma_done;
-               bam_txn->last_cmd_desc->callback_param = bam_txn;
-               if (bam_txn->last_data_desc) {
-                       bam_txn->last_data_desc->callback = qpic_bam_dma_done;
-                       bam_txn->last_data_desc->callback_param = bam_txn;
-                       bam_txn->wait_second_completion = true;
-               }
-
-               dma_async_issue_pending(nandc->tx_chan);
-               dma_async_issue_pending(nandc->rx_chan);
-               dma_async_issue_pending(nandc->cmd_chan);
-
-               if (!wait_for_completion_timeout(&bam_txn->txn_done,
-                                                QPIC_NAND_COMPLETION_TIMEOUT))
-                       ret = -ETIMEDOUT;
-       } else {
-               if (dma_sync_wait(nandc->chan, cookie) != DMA_COMPLETE)
-                       ret = -ETIMEDOUT;
-       }
-
-err_unmap_free_desc:
-       /*
-        * Unmap the dma sg_list and free the desc allocated by both
-        * prepare_bam_async_desc() and prep_adm_dma_desc() functions.
-        */
-       list_for_each_entry_safe(desc, n, &nandc->desc_list, node) {
-               list_del(&desc->node);
-
-               if (nandc->props->is_bam)
-                       dma_unmap_sg(nandc->dev, desc->bam_sgl,
-                                    desc->sgl_cnt, desc->dir);
-               else
-                       dma_unmap_sg(nandc->dev, &desc->adm_sgl, 1,
-                                    desc->dir);
-
-               kfree(desc);
-       }
-
-       return ret;
-}
-
-/* reset the register read buffer for next NAND operation */
-static void clear_read_regs(struct qcom_nand_controller *nandc)
-{
-       nandc->reg_read_pos = 0;
-       nandc_read_buffer_sync(nandc, false);
+       qcom_write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0);
+       qcom_write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL);
  }

  /*
@@ -1446,7 +403,7 @@ static int check_flash_errors(struct qcom_nand_host *host, int cw_cnt)
         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
         int i;

-       nandc_read_buffer_sync(nandc, true);
+       qcom_nandc_read_buffer_sync(nandc, true);

         for (i = 0; i < cw_cnt; i++) {
                 u32 flash = le32_to_cpu(nandc->reg_read_buf[i]);
@@ -1473,13 +430,13 @@ qcom_nandc_read_cw_raw(struct mtd_info *mtd, struct nand_chip *chip,
         nand_read_page_op(chip, page, 0, NULL, 0);
         nandc->buf_count = 0;
         nandc->buf_start = 0;
-       clear_read_regs(nandc);
+       qcom_clear_read_regs(nandc);
         host->use_ecc = false;

         if (nandc->props->qpic_v2)
                 raw_cw = ecc->steps - 1;

-       clear_bam_transaction(nandc);
+       qcom_clear_bam_transaction(nandc);
         set_address(host, host->cw_size * cw, page);
         update_rw_regs(host, 1, true, raw_cw);
         config_nand_page_read(chip);
@@ -1512,18 +469,18 @@ qcom_nandc_read_cw_raw(struct mtd_info *mtd, struct nand_chip *chip,

         config_nand_cw_read(chip, false, raw_cw);

-       read_data_dma(nandc, reg_off, data_buf, data_size1, 0);
+       qcom_read_data_dma(nandc, reg_off, data_buf, data_size1, 0);
         reg_off += data_size1;

-       read_data_dma(nandc, reg_off, oob_buf, oob_size1, 0);
+       qcom_read_data_dma(nandc, reg_off, oob_buf, oob_size1, 0);
         reg_off += oob_size1;

-       read_data_dma(nandc, reg_off, data_buf + data_size1, data_size2, 0);
+       qcom_read_data_dma(nandc, reg_off, data_buf + data_size1, data_size2, 0);
         reg_off += data_size2;

-       read_data_dma(nandc, reg_off, oob_buf + oob_size1, oob_size2, 0);
+       qcom_read_data_dma(nandc, reg_off, oob_buf + oob_size1, oob_size2, 0);

-       ret = submit_descs(nandc);
+       ret = qcom_submit_descs(nandc);
         if (ret) {
                 dev_err(nandc->dev, "failure to read raw cw %d\n", cw);
                 return ret;
@@ -1621,7 +578,7 @@ static int parse_read_errors(struct qcom_nand_host *host, u8 *data_buf,
         u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf;

         buf = (struct read_stats *)nandc->reg_read_buf;
-       nandc_read_buffer_sync(nandc, true);
+       qcom_nandc_read_buffer_sync(nandc, true);

         for (i = 0; i < ecc->steps; i++, buf++) {
                 u32 flash, buffer, erased_cw;
@@ -1750,8 +707,8 @@ static int read_page_ecc(struct qcom_nand_host *host, u8 *data_buf,
                 config_nand_cw_read(chip, true, i);

                 if (data_buf)
-                       read_data_dma(nandc, FLASH_BUF_ACC, data_buf,
-                                     data_size, 0);
+                       qcom_read_data_dma(nandc, FLASH_BUF_ACC, data_buf,
+                                          data_size, 0);

                 /*
                  * when ecc is enabled, the controller doesn't read the real
@@ -1766,8 +723,8 @@ static int read_page_ecc(struct qcom_nand_host *host, u8 *data_buf,
                         for (j = 0; j < host->bbm_size; j++)
                                 *oob_buf++ = 0xff;

-                       read_data_dma(nandc, FLASH_BUF_ACC + data_size,
-                                     oob_buf, oob_size, 0);
+                       qcom_read_data_dma(nandc, FLASH_BUF_ACC + data_size,
+                                          oob_buf, oob_size, 0);
                 }

                 if (data_buf)
@@ -1776,7 +733,7 @@ static int read_page_ecc(struct qcom_nand_host *host, u8 *data_buf,
                         oob_buf += oob_size;
         }

-       ret = submit_descs(nandc);
+       ret = qcom_submit_descs(nandc);
         if (ret) {
                 dev_err(nandc->dev, "failure to read page/oob\n");
                 return ret;
@@ -1797,7 +754,7 @@ static int copy_last_cw(struct qcom_nand_host *host, int page)
         int size;
         int ret;

-       clear_read_regs(nandc);
+       qcom_clear_read_regs(nandc);

         size = host->use_ecc ? host->cw_data : host->cw_size;

@@ -1809,9 +766,9 @@ static int copy_last_cw(struct qcom_nand_host *host, int page)

         config_nand_single_cw_page_read(chip, host->use_ecc, ecc->steps - 1);

-       read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, size, 0);
+       qcom_read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, size, 0);

-       ret = submit_descs(nandc);
+       ret = qcom_submit_descs(nandc);
         if (ret)
                 dev_err(nandc->dev, "failed to copy last codeword\n");

@@ -1897,14 +854,14 @@ static int qcom_nandc_read_page(struct nand_chip *chip, u8 *buf,
         nandc->buf_count = 0;
         nandc->buf_start = 0;
         host->use_ecc = true;
-       clear_read_regs(nandc);
+       qcom_clear_read_regs(nandc);
         set_address(host, 0, page);
         update_rw_regs(host, ecc->steps, true, 0);

         data_buf = buf;
         oob_buf = oob_required ? chip->oob_poi : NULL;

-       clear_bam_transaction(nandc);
+       qcom_clear_bam_transaction(nandc);

         return read_page_ecc(host, data_buf, oob_buf, page);
  }
@@ -1945,8 +902,8 @@ static int qcom_nandc_read_oob(struct nand_chip *chip, int page)
         if (host->nr_boot_partitions)
                 qcom_nandc_codeword_fixup(host, page);

-       clear_read_regs(nandc);
-       clear_bam_transaction(nandc);
+       qcom_clear_read_regs(nandc);
+       qcom_clear_bam_transaction(nandc);

         host->use_ecc = true;
         set_address(host, 0, page);
@@ -1973,8 +930,8 @@ static int qcom_nandc_write_page(struct nand_chip *chip, const u8 *buf,
         set_address(host, 0, page);
         nandc->buf_count = 0;
         nandc->buf_start = 0;
-       clear_read_regs(nandc);
-       clear_bam_transaction(nandc);
+       qcom_clear_read_regs(nandc);
+       qcom_clear_bam_transaction(nandc);

         data_buf = (u8 *)buf;
         oob_buf = chip->oob_poi;
@@ -1995,8 +952,8 @@ static int qcom_nandc_write_page(struct nand_chip *chip, const u8 *buf,
                         oob_size = ecc->bytes;
                 }

-               write_data_dma(nandc, FLASH_BUF_ACC, data_buf, data_size,
-                              i == (ecc->steps - 1) ? NAND_BAM_NO_EOT : 0);
+               qcom_write_data_dma(nandc, FLASH_BUF_ACC, data_buf, data_size,
+                                   i == (ecc->steps - 1) ? NAND_BAM_NO_EOT : 0);

                 /*
                  * when ECC is enabled, we don't really need to write anything
@@ -2008,8 +965,8 @@ static int qcom_nandc_write_page(struct nand_chip *chip, const u8 *buf,
                 if (qcom_nandc_is_last_cw(ecc, i)) {
                         oob_buf += host->bbm_size;

-                       write_data_dma(nandc, FLASH_BUF_ACC + data_size,
-                                      oob_buf, oob_size, 0);
+                       qcom_write_data_dma(nandc, FLASH_BUF_ACC + data_size,
+                                           oob_buf, oob_size, 0);
                 }

                 config_nand_cw_write(chip);
@@ -2018,7 +975,7 @@ static int qcom_nandc_write_page(struct nand_chip *chip, const u8 *buf,
                 oob_buf += oob_size;
         }

-       ret = submit_descs(nandc);
+       ret = qcom_submit_descs(nandc);
         if (ret) {
                 dev_err(nandc->dev, "failure to write page\n");
                 return ret;
@@ -2043,8 +1000,8 @@ static int qcom_nandc_write_page_raw(struct nand_chip *chip,
                 qcom_nandc_codeword_fixup(host, page);

         nand_prog_page_begin_op(chip, page, 0, NULL, 0);
-       clear_read_regs(nandc);
-       clear_bam_transaction(nandc);
+       qcom_clear_read_regs(nandc);
+       qcom_clear_bam_transaction(nandc);

         data_buf = (u8 *)buf;
         oob_buf = chip->oob_poi;
@@ -2070,28 +1027,28 @@ static int qcom_nandc_write_page_raw(struct nand_chip *chip,
                         oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
                 }

-               write_data_dma(nandc, reg_off, data_buf, data_size1,
-                              NAND_BAM_NO_EOT);
+               qcom_write_data_dma(nandc, reg_off, data_buf, data_size1,
+                                   NAND_BAM_NO_EOT);
                 reg_off += data_size1;
                 data_buf += data_size1;

-               write_data_dma(nandc, reg_off, oob_buf, oob_size1,
-                              NAND_BAM_NO_EOT);
+               qcom_write_data_dma(nandc, reg_off, oob_buf, oob_size1,
+                                   NAND_BAM_NO_EOT);
                 reg_off += oob_size1;
                 oob_buf += oob_size1;

-               write_data_dma(nandc, reg_off, data_buf, data_size2,
-                              NAND_BAM_NO_EOT);
+               qcom_write_data_dma(nandc, reg_off, data_buf, data_size2,
+                                   NAND_BAM_NO_EOT);
                 reg_off += data_size2;
                 data_buf += data_size2;

-               write_data_dma(nandc, reg_off, oob_buf, oob_size2, 0);
+               qcom_write_data_dma(nandc, reg_off, oob_buf, oob_size2, 0);
                 oob_buf += oob_size2;

                 config_nand_cw_write(chip);
         }

-       ret = submit_descs(nandc);
+       ret = qcom_submit_descs(nandc);
         if (ret) {
                 dev_err(nandc->dev, "failure to write raw page\n");
                 return ret;
@@ -2121,7 +1078,7 @@ static int qcom_nandc_write_oob(struct nand_chip *chip, int page)
                 qcom_nandc_codeword_fixup(host, page);

         host->use_ecc = true;
-       clear_bam_transaction(nandc);
+       qcom_clear_bam_transaction(nandc);

         /* calculate the data and oob size for the last codeword/step */
         data_size = ecc->size - ((ecc->steps - 1) << 2);
@@ -2136,11 +1093,11 @@ static int qcom_nandc_write_oob(struct nand_chip *chip, int page)
         update_rw_regs(host, 1, false, 0);

         config_nand_page_write(chip);
-       write_data_dma(nandc, FLASH_BUF_ACC,
-                      nandc->data_buffer, data_size + oob_size, 0);
+       qcom_write_data_dma(nandc, FLASH_BUF_ACC,
+                           nandc->data_buffer, data_size + oob_size, 0);
         config_nand_cw_write(chip);

-       ret = submit_descs(nandc);
+       ret = qcom_submit_descs(nandc);
         if (ret) {
                 dev_err(nandc->dev, "failure to write oob\n");
                 return ret;
@@ -2167,7 +1124,7 @@ static int qcom_nandc_block_bad(struct nand_chip *chip, loff_t ofs)
          */
         host->use_ecc = false;

-       clear_bam_transaction(nandc);
+       qcom_clear_bam_transaction(nandc);
         ret = copy_last_cw(host, page);
         if (ret)
                 goto err;
@@ -2194,8 +1151,8 @@ static int qcom_nandc_block_markbad(struct nand_chip *chip, loff_t ofs)
         struct nand_ecc_ctrl *ecc = &chip->ecc;
         int page, ret;

-       clear_read_regs(nandc);
-       clear_bam_transaction(nandc);
+       qcom_clear_read_regs(nandc);
+       qcom_clear_bam_transaction(nandc);

         /*
          * to mark the BBM as bad, we flash the entire last codeword with 0s.
@@ -2212,11 +1169,11 @@ static int qcom_nandc_block_markbad(struct nand_chip *chip, loff_t ofs)
         update_rw_regs(host, 1, false, ecc->steps - 1);

         config_nand_page_write(chip);
-       write_data_dma(nandc, FLASH_BUF_ACC,
-                      nandc->data_buffer, host->cw_size, 0);
+       qcom_write_data_dma(nandc, FLASH_BUF_ACC,
+                           nandc->data_buffer, host->cw_size, 0);
         config_nand_cw_write(chip);

-       ret = submit_descs(nandc);
+       ret = qcom_submit_descs(nandc);
         if (ret) {
                 dev_err(nandc->dev, "failure to update BBM\n");
                 return ret;
@@ -2456,14 +1413,14 @@ static int qcom_nand_attach_chip(struct nand_chip *chip)
         mtd_set_ooblayout(mtd, &qcom_nand_ooblayout_ops);
         /* Free the initially allocated BAM transaction for reading the ONFI params */
         if (nandc->props->is_bam)
-               free_bam_transaction(nandc);
+               qcom_free_bam_transaction(nandc);

         nandc->max_cwperpage = max_t(unsigned int, nandc->max_cwperpage,
                                      cwperpage);

         /* Now allocate the BAM transaction based on updated max_cwperpage */
         if (nandc->props->is_bam) {
-               nandc->bam_txn = alloc_bam_transaction(nandc);
+               nandc->bam_txn = qcom_alloc_bam_transaction(nandc);
                 if (!nandc->bam_txn) {
                         dev_err(nandc->dev,
                                 "failed to allocate bam transaction\n");
@@ -2663,7 +1620,7 @@ static int qcom_wait_rdy_poll(struct nand_chip *chip, unsigned int time_ms)
         unsigned long start = jiffies + msecs_to_jiffies(time_ms);
         u32 flash;

-       nandc_read_buffer_sync(nandc, true);
+       qcom_nandc_read_buffer_sync(nandc, true);

         do {
                 flash = le32_to_cpu(nandc->reg_read_buf[0]);
@@ -2703,23 +1660,23 @@ static int qcom_read_status_exec(struct nand_chip *chip,
         nandc->buf_start = 0;
         host->use_ecc = false;

-       clear_read_regs(nandc);
-       clear_bam_transaction(nandc);
+       qcom_clear_read_regs(nandc);
+       qcom_clear_bam_transaction(nandc);

         nandc_set_reg(chip, NAND_FLASH_CMD, q_op.cmd_reg);
         nandc_set_reg(chip, NAND_EXEC_CMD, 1);

-       write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
-       write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
-       read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
+       qcom_write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
+       qcom_write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
+       qcom_read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);

-       ret = submit_descs(nandc);
+       ret = qcom_submit_descs(nandc);
         if (ret) {
                 dev_err(nandc->dev, "failure in submitting status descriptor\n");
                 goto err_out;
         }

-       nandc_read_buffer_sync(nandc, true);
+       qcom_nandc_read_buffer_sync(nandc, true);

         for (i = 0; i < num_cw; i++) {
                 flash_status = le32_to_cpu(nandc->reg_read_buf[i]);
@@ -2760,8 +1717,8 @@ static int qcom_read_id_type_exec(struct nand_chip *chip, const struct nand_subo
         nandc->buf_start = 0;
         host->use_ecc = false;

-       clear_read_regs(nandc);
-       clear_bam_transaction(nandc);
+       qcom_clear_read_regs(nandc);
+       qcom_clear_bam_transaction(nandc);

         nandc_set_reg(chip, NAND_FLASH_CMD, q_op.cmd_reg);
         nandc_set_reg(chip, NAND_ADDR0, q_op.addr1_reg);
@@ -2771,12 +1728,12 @@ static int qcom_read_id_type_exec(struct nand_chip *chip, const struct nand_subo

         nandc_set_reg(chip, NAND_EXEC_CMD, 1);

-       write_reg_dma(nandc, NAND_FLASH_CMD, 4, NAND_BAM_NEXT_SGL);
-       write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
+       qcom_write_reg_dma(nandc, NAND_FLASH_CMD, 4, NAND_BAM_NEXT_SGL);
+       qcom_write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);

-       read_reg_dma(nandc, NAND_READ_ID, 1, NAND_BAM_NEXT_SGL);
+       qcom_read_reg_dma(nandc, NAND_READ_ID, 1, NAND_BAM_NEXT_SGL);

-       ret = submit_descs(nandc);
+       ret = qcom_submit_descs(nandc);
         if (ret) {
                 dev_err(nandc->dev, "failure in submitting read id descriptor\n");
                 goto err_out;
@@ -2786,7 +1743,7 @@ static int qcom_read_id_type_exec(struct nand_chip *chip, const struct nand_subo
         op_id = q_op.data_instr_idx;
         len = nand_subop_get_data_len(subop, op_id);

-       nandc_read_buffer_sync(nandc, true);
+       qcom_nandc_read_buffer_sync(nandc, true);
         memcpy(instr->ctx.data.buf.in, nandc->reg_read_buf, len);

  err_out:
@@ -2823,21 +1780,21 @@ static int qcom_misc_cmd_type_exec(struct nand_chip *chip, const struct nand_sub
         nandc->buf_start = 0;
         host->use_ecc = false;

-       clear_read_regs(nandc);
-       clear_bam_transaction(nandc);
+       qcom_clear_read_regs(nandc);
+       qcom_clear_bam_transaction(nandc);

         nandc_set_reg(chip, NAND_FLASH_CMD, q_op.cmd_reg);
         nandc_set_reg(chip, NAND_EXEC_CMD, 1);

-       write_reg_dma(nandc, NAND_FLASH_CMD, instrs, NAND_BAM_NEXT_SGL);
-       (q_op.cmd_reg == OP_BLOCK_ERASE) ? write_reg_dma(nandc, NAND_DEV0_CFG0,
-       2, NAND_BAM_NEXT_SGL) : read_reg_dma(nandc,
+       qcom_write_reg_dma(nandc, NAND_FLASH_CMD, instrs, NAND_BAM_NEXT_SGL);
+       (q_op.cmd_reg == OP_BLOCK_ERASE) ? qcom_write_reg_dma(nandc, NAND_DEV0_CFG0,
+       2, NAND_BAM_NEXT_SGL) : qcom_read_reg_dma(nandc,
         NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);

-       write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
-       read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
+       qcom_write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
+       qcom_read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);

-       ret = submit_descs(nandc);
+       ret = qcom_submit_descs(nandc);
         if (ret) {
                 dev_err(nandc->dev, "failure in submitting misc descriptor\n");
                 goto err_out;
@@ -2870,8 +1827,8 @@ static int qcom_param_page_type_exec(struct nand_chip *chip,  const struct nand_
         nandc->buf_count = 0;
         nandc->buf_start = 0;
         host->use_ecc = false;
-       clear_read_regs(nandc);
-       clear_bam_transaction(nandc);
+       qcom_clear_read_regs(nandc);
+       qcom_clear_bam_transaction(nandc);

         nandc_set_reg(chip, NAND_FLASH_CMD, q_op.cmd_reg);

@@ -2914,8 +1871,8 @@ static int qcom_param_page_type_exec(struct nand_chip *chip,  const struct nand_
         nandc_set_read_loc(chip, 0, 0, 0, len, 1);

         if (!nandc->props->qpic_v2) {
-               write_reg_dma(nandc, NAND_DEV_CMD_VLD, 1, 0);
-               write_reg_dma(nandc, NAND_DEV_CMD1, 1, NAND_BAM_NEXT_SGL);
+               qcom_write_reg_dma(nandc, NAND_DEV_CMD_VLD, 1, 0);
+               qcom_write_reg_dma(nandc, NAND_DEV_CMD1, 1, NAND_BAM_NEXT_SGL);
         }

         nandc->buf_count = len;
@@ -2923,16 +1880,16 @@ static int qcom_param_page_type_exec(struct nand_chip *chip,  const struct nand_

         config_nand_single_cw_page_read(chip, false, 0);

-       read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer,
-                     nandc->buf_count, 0);
+       qcom_read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer,
+                          nandc->buf_count, 0);

         /* restore CMD1 and VLD regs */
         if (!nandc->props->qpic_v2) {
-               write_reg_dma(nandc, NAND_DEV_CMD1_RESTORE, 1, 0);
-               write_reg_dma(nandc, NAND_DEV_CMD_VLD_RESTORE, 1, NAND_BAM_NEXT_SGL);
+               qcom_write_reg_dma(nandc, NAND_DEV_CMD1_RESTORE, 1, 0);
+               qcom_write_reg_dma(nandc, NAND_DEV_CMD_VLD_RESTORE, 1, NAND_BAM_NEXT_SGL);
         }

-       ret = submit_descs(nandc);
+       ret = qcom_submit_descs(nandc);
         if (ret) {
                 dev_err(nandc->dev, "failure in submitting param page descriptor\n");
                 goto err_out;
@@ -3016,136 +1973,6 @@ static const struct nand_controller_ops qcom_nandc_ops = {
         .exec_op = qcom_nand_exec_op,
  };

-static void qcom_nandc_unalloc(struct qcom_nand_controller *nandc)
-{
-       if (nandc->props->is_bam) {
-               if (!dma_mapping_error(nandc->dev, nandc->reg_read_dma))
-                       dma_unmap_single(nandc->dev, nandc->reg_read_dma,
-                                        MAX_REG_RD *
-                                        sizeof(*nandc->reg_read_buf),
-                                        DMA_FROM_DEVICE);
-
-               if (nandc->tx_chan)
-                       dma_release_channel(nandc->tx_chan);
-
-               if (nandc->rx_chan)
-                       dma_release_channel(nandc->rx_chan);
-
-               if (nandc->cmd_chan)
-                       dma_release_channel(nandc->cmd_chan);
-       } else {
-               if (nandc->chan)
-                       dma_release_channel(nandc->chan);
-       }
-}
-
-static int qcom_nandc_alloc(struct qcom_nand_controller *nandc)
-{
-       int ret;
-
-       ret = dma_set_coherent_mask(nandc->dev, DMA_BIT_MASK(32));
-       if (ret) {
-               dev_err(nandc->dev, "failed to set DMA mask\n");
-               return ret;
-       }
-
-       /*
-        * we use the internal buffer for reading ONFI params, reading small
-        * data like ID and status, and preforming read-copy-write operations
-        * when writing to a codeword partially. 532 is the maximum possible
-        * size of a codeword for our nand controller
-        */
-       nandc->buf_size = 532;
-
-       nandc->data_buffer = devm_kzalloc(nandc->dev, nandc->buf_size, GFP_KERNEL);
-       if (!nandc->data_buffer)
-               return -ENOMEM;
-
-       nandc->regs = devm_kzalloc(nandc->dev, sizeof(*nandc->regs), GFP_KERNEL);
-       if (!nandc->regs)
-               return -ENOMEM;
-
-       nandc->reg_read_buf = devm_kcalloc(nandc->dev, MAX_REG_RD,
-                                          sizeof(*nandc->reg_read_buf),
-                                          GFP_KERNEL);
-       if (!nandc->reg_read_buf)
-               return -ENOMEM;
-
-       if (nandc->props->is_bam) {
-               nandc->reg_read_dma =
-                       dma_map_single(nandc->dev, nandc->reg_read_buf,
-                                      MAX_REG_RD *
-                                      sizeof(*nandc->reg_read_buf),
-                                      DMA_FROM_DEVICE);
-               if (dma_mapping_error(nandc->dev, nandc->reg_read_dma)) {
-                       dev_err(nandc->dev, "failed to DMA MAP reg buffer\n");
-                       return -EIO;
-               }
-
-               nandc->tx_chan = dma_request_chan(nandc->dev, "tx");
-               if (IS_ERR(nandc->tx_chan)) {
-                       ret = PTR_ERR(nandc->tx_chan);
-                       nandc->tx_chan = NULL;
-                       dev_err_probe(nandc->dev, ret,
-                                     "tx DMA channel request failed\n");
-                       goto unalloc;
-               }
-
-               nandc->rx_chan = dma_request_chan(nandc->dev, "rx");
-               if (IS_ERR(nandc->rx_chan)) {
-                       ret = PTR_ERR(nandc->rx_chan);
-                       nandc->rx_chan = NULL;
-                       dev_err_probe(nandc->dev, ret,
-                                     "rx DMA channel request failed\n");
-                       goto unalloc;
-               }
-
-               nandc->cmd_chan = dma_request_chan(nandc->dev, "cmd");
-               if (IS_ERR(nandc->cmd_chan)) {
-                       ret = PTR_ERR(nandc->cmd_chan);
-                       nandc->cmd_chan = NULL;
-                       dev_err_probe(nandc->dev, ret,
-                                     "cmd DMA channel request failed\n");
-                       goto unalloc;
-               }
-
-               /*
-                * Initially allocate BAM transaction to read ONFI param page.
-                * After detecting all the devices, this BAM transaction will
-                * be freed and the next BAM transaction will be allocated with
-                * maximum codeword size
-                */
-               nandc->max_cwperpage = 1;
-               nandc->bam_txn = alloc_bam_transaction(nandc);
-               if (!nandc->bam_txn) {
-                       dev_err(nandc->dev,
-                               "failed to allocate bam transaction\n");
-                       ret = -ENOMEM;
-                       goto unalloc;
-               }
-       } else {
-               nandc->chan = dma_request_chan(nandc->dev, "rxtx");
-               if (IS_ERR(nandc->chan)) {
-                       ret = PTR_ERR(nandc->chan);
-                       nandc->chan = NULL;
-                       dev_err_probe(nandc->dev, ret,
-                                     "rxtx DMA channel request failed\n");
-                       return ret;
-               }
-       }
-
-       INIT_LIST_HEAD(&nandc->desc_list);
-       INIT_LIST_HEAD(&nandc->host_list);
-
-       nand_controller_init(&nandc->controller);
-       nandc->controller.ops = &qcom_nandc_ops;
-
-       return 0;
-unalloc:
-       qcom_nandc_unalloc(nandc);
-       return ret;
-}
-
  /* one time setup of a few nand controller registers */
  static int qcom_nandc_setup(struct qcom_nand_controller *nandc)
  {
@@ -3427,6 +2254,9 @@ static int qcom_nandc_probe(struct platform_device *pdev)
         if (ret)
                 goto err_nandc_alloc;

+       nand_controller_init(&nandc->controller);
+       nandc->controller.ops = &qcom_nandc_ops;
+
         ret = qcom_nandc_setup(nandc);
         if (ret)
                 goto err_setup;
@@ -3473,28 +2303,28 @@ static void qcom_nandc_remove(struct platform_device *pdev)
                            DMA_BIDIRECTIONAL, 0);
  }

-static const struct qcom_nandc_props ipq806x_nandc_props = {
+static struct qcom_nandc_props ipq806x_nandc_props = {
         .ecc_modes = (ECC_RS_4BIT | ECC_BCH_8BIT),
         .is_bam = false,
         .use_codeword_fixup = true,
         .dev_cmd_reg_start = 0x0,
  };

-static const struct qcom_nandc_props ipq4019_nandc_props = {
+static struct qcom_nandc_props ipq4019_nandc_props = {
         .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
         .is_bam = true,
         .is_qpic = true,
         .dev_cmd_reg_start = 0x0,
  };

-static const struct qcom_nandc_props ipq8074_nandc_props = {
+static struct qcom_nandc_props ipq8074_nandc_props = {
         .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
         .is_bam = true,
         .is_qpic = true,
         .dev_cmd_reg_start = 0x7000,
  };

-static const struct qcom_nandc_props sdx55_nandc_props = {
+static struct qcom_nandc_props sdx55_nandc_props = {
         .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
         .is_bam = true,
         .is_qpic = true,
diff --git a/include/linux/mtd/nand-qpic-common.h b/include/linux/mtd/nand-qpic-common.h
new file mode 100644
index 000000000000..aced15866627
--- /dev/null
+++ b/include/linux/mtd/nand-qpic-common.h
@@ -0,0 +1,486 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/*
+ * QCOM QPIC common APIs header file
+ *
+ * Copyright (c) 2023 Qualcomm Inc.
+ * Authors:     Md sadre Alam           <quic_mdalam@xxxxxxxxxxx>
+ *             Sricharan R             <quic_srichara@xxxxxxxxxxx>
+ *             Varadarajan Narayanan   <quic_varada@xxxxxxxxxxx>

Oh, really?

+ *
+ */
+#ifndef __MTD_NAND_QPIC_COMMON_H__
+#define __MTD_NAND_QPIC_COMMON_H__
+
+#include <linux/bitops.h>
+#include <linux/clk.h>
+#include <linux/delay.h>
+#include <linux/dmaengine.h>
+#include <linux/dma-mapping.h>
+#include <linux/dma/qcom_adm.h>
+#include <linux/dma/qcom_bam_dma.h>
+#include <linux/module.h>
+#include <linux/mtd/partitions.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/of.h>
+#include <linux/platform_device.h>
+#include <linux/slab.h>
+
+/* NANDc reg offsets */
+#define        NAND_FLASH_CMD                  0x00
+#define        NAND_ADDR0                      0x04
+#define        NAND_ADDR1                      0x08
+#define        NAND_FLASH_CHIP_SELECT          0x0c
+#define        NAND_EXEC_CMD                   0x10
+#define        NAND_FLASH_STATUS               0x14
+#define        NAND_BUFFER_STATUS              0x18
+#define        NAND_DEV0_CFG0                  0x20
+#define        NAND_DEV0_CFG1                  0x24
+#define        NAND_DEV0_ECC_CFG               0x28
+#define        NAND_AUTO_STATUS_EN             0x2c
+#define        NAND_DEV1_CFG0                  0x30
+#define        NAND_DEV1_CFG1                  0x34
+#define        NAND_READ_ID                    0x40
+#define        NAND_READ_STATUS                0x44
+#define        NAND_DEV_CMD0                   0xa0
+#define        NAND_DEV_CMD1                   0xa4
+#define        NAND_DEV_CMD2                   0xa8
+#define        NAND_DEV_CMD_VLD                0xac
+#define        SFLASHC_BURST_CFG               0xe0
+#define        NAND_ERASED_CW_DETECT_CFG       0xe8
+#define        NAND_ERASED_CW_DETECT_STATUS    0xec
+#define        NAND_EBI2_ECC_BUF_CFG           0xf0
+#define        FLASH_BUF_ACC                   0x100
+
+#define        NAND_CTRL                       0xf00
+#define        NAND_VERSION                    0xf08
+#define        NAND_READ_LOCATION_0            0xf20
+#define        NAND_READ_LOCATION_1            0xf24
+#define        NAND_READ_LOCATION_2            0xf28
+#define        NAND_READ_LOCATION_3            0xf2c
+#define        NAND_READ_LOCATION_LAST_CW_0    0xf40
+#define        NAND_READ_LOCATION_LAST_CW_1    0xf44
+#define        NAND_READ_LOCATION_LAST_CW_2    0xf48
+#define        NAND_READ_LOCATION_LAST_CW_3    0xf4c
+
+/* dummy register offsets, used by write_reg_dma */
+#define        NAND_DEV_CMD1_RESTORE           0xdead
+#define        NAND_DEV_CMD_VLD_RESTORE        0xbeef
+
+/* NAND_FLASH_CMD bits */
+#define        PAGE_ACC                        BIT(4)
+#define        LAST_PAGE                       BIT(5)
+
+/* NAND_FLASH_CHIP_SELECT bits */
+#define        NAND_DEV_SEL                    0
+#define        DM_EN                           BIT(2)
+
+/* NAND_FLASH_STATUS bits */
+#define        FS_OP_ERR                       BIT(4)
+#define        FS_READY_BSY_N                  BIT(5)
+#define        FS_MPU_ERR                      BIT(8)
+#define        FS_DEVICE_STS_ERR               BIT(16)
+#define        FS_DEVICE_WP                    BIT(23)
+
+/* NAND_BUFFER_STATUS bits */
+#define        BS_UNCORRECTABLE_BIT            BIT(8)
+#define        BS_CORRECTABLE_ERR_MSK          0x1f
+
+/* NAND_DEVn_CFG0 bits */
+#define        DISABLE_STATUS_AFTER_WRITE      4
+#define        CW_PER_PAGE                     6
+#define        UD_SIZE_BYTES                   9
+#define        UD_SIZE_BYTES_MASK              GENMASK(18, 9)
+#define        ECC_PARITY_SIZE_BYTES_RS        19
+#define        SPARE_SIZE_BYTES                23
+#define        SPARE_SIZE_BYTES_MASK           GENMASK(26, 23)
+#define        NUM_ADDR_CYCLES                 27
+#define        STATUS_BFR_READ                 30
+#define        SET_RD_MODE_AFTER_STATUS        31
+
+/* NAND_DEVn_CFG0 bits */
+#define        DEV0_CFG1_ECC_DISABLE           0
+#define        WIDE_FLASH                      1
+#define        NAND_RECOVERY_CYCLES            2
+#define        CS_ACTIVE_BSY                   5
+#define        BAD_BLOCK_BYTE_NUM              6
+#define        BAD_BLOCK_IN_SPARE_AREA         16
+#define        WR_RD_BSY_GAP                   17
+#define        ENABLE_BCH_ECC                  27
+
+/* NAND_DEV0_ECC_CFG bits */
+#define        ECC_CFG_ECC_DISABLE             0
+#define        ECC_SW_RESET                    1
+#define        ECC_MODE                        4
+#define        ECC_PARITY_SIZE_BYTES_BCH       8
+#define        ECC_NUM_DATA_BYTES              16
+#define        ECC_NUM_DATA_BYTES_MASK         GENMASK(25, 16)
+#define        ECC_FORCE_CLK_OPEN              30
+
+/* NAND_DEV_CMD1 bits */
+#define        READ_ADDR                       0
+
+/* NAND_DEV_CMD_VLD bits */
+#define        READ_START_VLD                  BIT(0)
+#define        READ_STOP_VLD                   BIT(1)
+#define        WRITE_START_VLD                 BIT(2)
+#define        ERASE_START_VLD                 BIT(3)
+#define        SEQ_READ_START_VLD              BIT(4)
+
+/* NAND_EBI2_ECC_BUF_CFG bits */
+#define        NUM_STEPS                       0
+
+/* NAND_ERASED_CW_DETECT_CFG bits */
+#define        ERASED_CW_ECC_MASK              1
+#define        AUTO_DETECT_RES                 0
+#define        MASK_ECC                        BIT(ERASED_CW_ECC_MASK)
+#define        RESET_ERASED_DET                BIT(AUTO_DETECT_RES)
+#define        ACTIVE_ERASED_DET               (0 << AUTO_DETECT_RES)
+#define        CLR_ERASED_PAGE_DET             (RESET_ERASED_DET | MASK_ECC)
+#define        SET_ERASED_PAGE_DET             (ACTIVE_ERASED_DET | MASK_ECC)
+
+/* NAND_ERASED_CW_DETECT_STATUS bits */
+#define        PAGE_ALL_ERASED                 BIT(7)
+#define        CODEWORD_ALL_ERASED             BIT(6)
+#define        PAGE_ERASED                     BIT(5)
+#define        CODEWORD_ERASED                 BIT(4)
+#define        ERASED_PAGE                     (PAGE_ALL_ERASED | PAGE_ERASED)
+#define        ERASED_CW                       (CODEWORD_ALL_ERASED | CODEWORD_ERASED)
+
+/* NAND_READ_LOCATION_n bits */
+#define READ_LOCATION_OFFSET           0
+#define READ_LOCATION_SIZE             16
+#define READ_LOCATION_LAST             31
+
+/* Version Mask */
+#define        NAND_VERSION_MAJOR_MASK         0xf0000000
+#define        NAND_VERSION_MAJOR_SHIFT        28
+#define        NAND_VERSION_MINOR_MASK         0x0fff0000
+#define        NAND_VERSION_MINOR_SHIFT        16
+
+/* NAND OP_CMDs */
+#define        OP_PAGE_READ                    0x2
+#define        OP_PAGE_READ_WITH_ECC           0x3
+#define        OP_PAGE_READ_WITH_ECC_SPARE     0x4
+#define        OP_PAGE_READ_ONFI_READ          0x5
+#define        OP_PROGRAM_PAGE                 0x6
+#define        OP_PAGE_PROGRAM_WITH_ECC        0x7
+#define        OP_PROGRAM_PAGE_SPARE           0x9
+#define        OP_BLOCK_ERASE                  0xa
+#define        OP_CHECK_STATUS                 0xc
+#define        OP_FETCH_ID                     0xb
+#define        OP_RESET_DEVICE                 0xd
+
+/* Default Value for NAND_DEV_CMD_VLD */
+#define NAND_DEV_CMD_VLD_VAL           (READ_START_VLD | WRITE_START_VLD | \
+                                        ERASE_START_VLD | SEQ_READ_START_VLD)
+
+/* NAND_CTRL bits */
+#define        BAM_MODE_EN                     BIT(0)
+
+/*
+ * the NAND controller performs reads/writes with ECC in 516 byte chunks.
+ * the driver calls the chunks 'step' or 'codeword' interchangeably
+ */
+#define        NANDC_STEP_SIZE                 512
+
+/*
+ * the largest page size we support is 8K, this will have 16 steps/codewords
+ * of 512 bytes each
+ */
+#define        MAX_NUM_STEPS                   (SZ_8K / NANDC_STEP_SIZE)
+
+/* we read at most 3 registers per codeword scan */
+#define        MAX_REG_RD                      (3 * MAX_NUM_STEPS)
+
+#define QPIC_PER_CW_CMD_ELEMENTS       32
+#define QPIC_PER_CW_CMD_SGL            32
+#define QPIC_PER_CW_DATA_SGL           8
+
+#define QPIC_NAND_COMPLETION_TIMEOUT   msecs_to_jiffies(2000)
+
+/*
+ * Flags used in DMA descriptor preparation helper functions
+ * (i.e. read_reg_dma/write_reg_dma/read_data_dma/write_data_dma)
+ */
+/* Don't set the EOT in current tx BAM sgl */
+#define NAND_BAM_NO_EOT                        BIT(0)
+/* Set the NWD flag in current BAM sgl */
+#define NAND_BAM_NWD                   BIT(1)
+/* Finish writing in the current BAM sgl and start writing in another BAM sgl */
+#define NAND_BAM_NEXT_SGL              BIT(2)
+
+/*
+ * Returns the actual register address for all NAND_DEV_ registers
+ * (i.e. NAND_DEV_CMD0, NAND_DEV_CMD1, NAND_DEV_CMD2 and NAND_DEV_CMD_VLD)
+ */
+#define dev_cmd_reg_addr(nandc, reg) ((nandc)->props->dev_cmd_reg_start + (reg))

Sensible prefixes are appreciated in the global headers too.

+
+/* Returns the NAND register physical address */
+#define nandc_reg_phys(chip, offset) ((chip)->base_phys + (offset))
+
+/* Returns the dma address for reg read buffer */
+#define reg_buf_dma_addr(chip, vaddr) \
+       ((chip)->reg_read_dma + \
+       ((u8 *)(vaddr) - (u8 *)(chip)->reg_read_buf))
+
+/*
+ * Erased codeword status is being used two times in single transfer so this
+ * flag will determine the current value of erased codeword status register
+ */
+#define NAND_ERASED_CW_SET             BIT(4)
+
+#define MAX_ADDRESS_CYCLE              5
+
+/*
+ * This data type corresponds to the BAM transaction which will be used for all
+ * NAND transfers.
+ * @bam_ce - the array of BAM command elements
+ * @cmd_sgl - sgl for NAND BAM command pipe
+ * @data_sgl - sgl for NAND BAM consumer/producer pipe
+ * @last_data_desc - last DMA desc in data channel (tx/rx).
+ * @last_cmd_desc - last DMA desc in command channel.
+ * @txn_done - completion for NAND transfer.
+ * @bam_ce_pos - the index in bam_ce which is available for next sgl
+ * @bam_ce_start - the index in bam_ce which marks the start position ce
+ *                for current sgl. It will be used for size calculation
+ *                for current sgl
+ * @cmd_sgl_pos - current index in command sgl.
+ * @cmd_sgl_start - start index in command sgl.
+ * @tx_sgl_pos - current index in data sgl for tx.
+ * @tx_sgl_start - start index in data sgl for tx.
+ * @rx_sgl_pos - current index in data sgl for rx.
+ * @rx_sgl_start - start index in data sgl for rx.
+ * @wait_second_completion - wait for second DMA desc completion before making
+ *                          the NAND transfer completion.
+ */
+struct bam_transaction {
+       struct bam_cmd_element *bam_ce;
+       struct scatterlist *cmd_sgl;
+       struct scatterlist *data_sgl;
+       struct dma_async_tx_descriptor *last_data_desc;
+       struct dma_async_tx_descriptor *last_cmd_desc;
+       struct completion txn_done;
+       u32 bam_ce_pos;
+       u32 bam_ce_start;
+       u32 cmd_sgl_pos;
+       u32 cmd_sgl_start;
+       u32 tx_sgl_pos;
+       u32 tx_sgl_start;
+       u32 rx_sgl_pos;
+       u32 rx_sgl_start;
+       bool wait_second_completion;
+};
+
+/*
+ * This data type corresponds to the nand dma descriptor
+ * @dma_desc - low level DMA engine descriptor
+ * @list - list for desc_info
+ *
+ * @adm_sgl - sgl which will be used for single sgl dma descriptor. Only used by
+ *           ADM
+ * @bam_sgl - sgl which will be used for dma descriptor. Only used by BAM
+ * @sgl_cnt - number of SGL in bam_sgl. Only used by BAM
+ * @dir - DMA transfer direction
+ */
+struct desc_info {
+       struct dma_async_tx_descriptor *dma_desc;
+       struct list_head node;
+
+       union {
+               struct scatterlist adm_sgl;
+               struct {
+                       struct scatterlist *bam_sgl;
+                       int sgl_cnt;
+               };
+       };
+       enum dma_data_direction dir;
+};
+
+/*
+ * holds the current register values that we want to write. acts as a contiguous
+ * chunk of memory which we use to write the controller registers through DMA.
+ */
+struct nandc_regs {
+       __le32 cmd;
+       __le32 addr0;
+       __le32 addr1;
+       __le32 chip_sel;
+       __le32 exec;
+
+       __le32 cfg0;
+       __le32 cfg1;
+       __le32 ecc_bch_cfg;
+
+       __le32 clrflashstatus;
+       __le32 clrreadstatus;
+
+       __le32 cmd1;
+       __le32 vld;
+
+       __le32 orig_cmd1;
+       __le32 orig_vld;
+
+       __le32 ecc_buf_cfg;
+       __le32 read_location0;
+       __le32 read_location1;
+       __le32 read_location2;
+       __le32 read_location3;
+       __le32 read_location_last0;
+       __le32 read_location_last1;
+       __le32 read_location_last2;
+       __le32 read_location_last3;
+
+       __le32 erased_cw_detect_cfg_clr;
+       __le32 erased_cw_detect_cfg_set;
+};

Is there any reason to export both register offsets and a containing struct?

+
+/*
+ * NAND controller data struct
+ *
+ * @dev:                       parent device
+ *
+ * @base:                      MMIO base
+ *
+ * @core_clk:                  controller clock
+ * @aon_clk:                   another controller clock
+ *
+ * @regs:                      a contiguous chunk of memory for DMA register
+ *                             writes. contains the register values to be
+ *                             written to controller
+ *
+ * @props:                     properties of current NAND controller,
+ *                             initialized via DT match data
+ *
+ * @controller:                        base controller structure
+ * @host_list:                 list containing all the chips attached to the
+ *                             controller
+ *
+ * @chan:                      dma channel
+ * @cmd_crci:                  ADM DMA CRCI for command flow control
+ * @data_crci:                 ADM DMA CRCI for data flow control
+ *
+ * @desc_list:                 DMA descriptor list (list of desc_infos)
+ *
+ * @data_buffer:               our local DMA buffer for page read/writes,
+ *                             used when we can't use the buffer provided
+ *                             by upper layers directly
+ * @reg_read_buf:              local buffer for reading back registers via DMA
+ *
+ * @base_phys:                 physical base address of controller registers
+ * @base_dma:                  dma base address of controller registers
+ * @reg_read_dma:              contains dma address for register read buffer
+ *
+ * @buf_size/count/start:      markers for chip->legacy.read_buf/write_buf
+ *                             functions
+ * @max_cwperpage:             maximum QPIC codewords required. calculated
+ *                             from all connected NAND devices pagesize
+ *
+ * @reg_read_pos:              marker for data read in reg_read_buf
+ *
+ * @cmd1/vld:                  some fixed controller register values
+ *
+ * @exec_opwrite:              flag to select correct number of code word
+ *                             while reading status
+ */
+struct qcom_nand_controller {

If you need to export data structures, this usually means that
something is not that great with the design. Also, do you really need
qcom_nand_controller::controller in the SPI NOR case?

+       struct device *dev;
+
+       void __iomem *base;
+
+       struct clk *core_clk;
+       struct clk *aon_clk;
+
+       struct nandc_regs *regs;
+       struct bam_transaction *bam_txn;
+
+       const struct qcom_nandc_props *props;
+
+       struct nand_controller controller;
+       struct list_head host_list;
+
+       union {
+               /* will be used only by QPIC for BAM DMA */
+               struct {
+                       struct dma_chan *tx_chan;
+                       struct dma_chan *rx_chan;
+                       struct dma_chan *cmd_chan;
+               };
+
+               /* will be used only by EBI2 for ADM DMA */
+               struct {
+                       struct dma_chan *chan;
+                       unsigned int cmd_crci;
+                       unsigned int data_crci;
+               };
+       };
+
+       struct list_head desc_list;
+
+       u8              *data_buffer;
+       __le32          *reg_read_buf;
+
+       phys_addr_t base_phys;
+       dma_addr_t base_dma;
+       dma_addr_t reg_read_dma;
+
+       int             buf_size;
+       int             buf_count;
+       int             buf_start;
+       unsigned int    max_cwperpage;
+
+       int reg_read_pos;
+
+       u32 cmd1, vld;
+       bool exec_opwrite;
+};
+
+/*
+ * This data type corresponds to the NAND controller properties which varies
+ * among different NAND controllers.
+ * @ecc_modes - ecc mode for NAND
+ * @dev_cmd_reg_start - NAND_DEV_CMD_* registers starting offset
+ * @is_bam - whether NAND controller is using BAM
+ * @is_qpic - whether NAND CTRL is part of qpic IP
+ * @qpic_v2 - flag to indicate QPIC IP version 2
+ * @use_codeword_fixup - whether NAND has different layout for boot partitions
+ */
+struct qcom_nandc_props {
+       u32 ecc_modes;
+       u32 dev_cmd_reg_start;
+       bool is_bam;
+       bool is_qpic;
+       bool qpic_v2;
+       bool use_codeword_fixup;
+};
+
+void config_nand_page_read(struct nand_chip *chip);
+void qcom_qpic_bam_dma_done(void *data);

So, what is the actual prefix? qcom_? Isn't that too broad? Not to
mention that config_nand_page_read isn't following even that style.

+void qcom_nandc_read_buffer_sync(struct qcom_nand_controller *nandc, bool is_cpu);
+__le32 *qcom_offset_to_nandc_reg(struct nandc_regs *regs, int offset);
+int qcom_prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read,
+                          int reg_off, const void *vaddr, int size,
+                       bool flow_control);
+int qcom_submit_descs(struct qcom_nand_controller *nandc);
+int qcom_prepare_bam_async_desc(struct qcom_nand_controller *nandc,
+                               struct dma_chan *chan, unsigned long flags);
+int qcom_prep_bam_dma_desc_cmd(struct qcom_nand_controller *nandc, bool read,
+                              int reg_off, const void *vaddr,
+                       int size, unsigned int flags);
+int qcom_prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read,
+                               const void *vaddr,
+                       int size, unsigned int flags);
+int qcom_read_reg_dma(struct qcom_nand_controller *nandc, int first,
+                     int num_regs, unsigned int flags);
+int qcom_write_reg_dma(struct qcom_nand_controller *nandc, int first,
+                      int num_regs, unsigned int flags);
+int qcom_read_data_dma(struct qcom_nand_controller *nandc, int reg_off,
+                      const u8 *vaddr, int size, unsigned int flags);
+int qcom_write_data_dma(struct qcom_nand_controller *nandc, int reg_off,
+                       const u8 *vaddr, int size, unsigned int flags);
+struct bam_transaction *qcom_alloc_bam_transaction(struct qcom_nand_controller *nandc);
+void qcom_clear_bam_transaction(struct qcom_nand_controller *nandc);
+void qcom_nandc_unalloc(struct qcom_nand_controller *nandc);
+int qcom_nandc_alloc(struct qcom_nand_controller *nandc);
+void qcom_clear_read_regs(struct qcom_nand_controller *nandc);
+void qcom_free_bam_transaction(struct qcom_nand_controller *nandc);
+#endif
--
2.34.1



General comment: Please take a pause. Start from the scratch by
actually _designing_, what kind of API do you need for you common core
and for NAND and SPI-NOR controllers. Then rework existing driver to
use that API internally. Move the API functions to the common helper.
Add the SPI-NOR driver on top of new _designed_ helper. Just
continuing further on the path of "let's move this and that" will not
lead you to acceptable solution.





[Index of Archives]     [Linux ARM Kernel]     [Linux ARM]     [Linux Omap]     [Fedora ARM]     [Linux for Sparc]     [IETF Annouce]     [Security]     [Bugtraq]     [Linux MIPS]     [ECOS]     [Asterisk Internet PBX]     [Linux API]

  Powered by Linux