From: Nicolas Pitre <npitre@xxxxxxxxxxxx> Several years later I just realized that this code could be optimized and more importantly simplified even further. With some reordering, it is possible to dispense with overflow handling entirely and still have optimal code. There is also no longer a reason to have the possibility for architectures to override the generic version. Only ARM did it and these days the compiler does a better job than the hand-crafted assembly version anyway. Kernel binary gets slightly smaller as well. Using the ARM's versatile_defconfig plus CONFIG_TEST_DIV64=y: Before this patch: text data bss dec hex filename 9644668 2743926 193424 12582018 bffc82 vmlinux With this patch: text data bss dec hex filename 9643572 2743926 193424 12580922 bff83a vmlinux Signed-off-by: Nicolas Pitre <npitre@xxxxxxxxxxxx> --- include/asm-generic/div64.h | 105 +++++++++++------------------------- 1 file changed, 31 insertions(+), 74 deletions(-) diff --git a/include/asm-generic/div64.h b/include/asm-generic/div64.h index 13f5aa68a4..0741c2b003 100644 --- a/include/asm-generic/div64.h +++ b/include/asm-generic/div64.h @@ -116,98 +116,55 @@ ___m = (~0ULL / ___b) * ___p; \ ___m += ((~0ULL % ___b + 1) * ___p) / ___b; \ } else { \ - /* \ - * Reduce m / p, and try to clear bit 31 of m when \ - * possible, otherwise that'll need extra overflow \ - * handling later. \ - */ \ - uint32_t ___bits = -(___m & -___m); \ - ___bits |= ___m >> 32; \ - ___bits = (~___bits) << 1; \ - /* \ - * If ___bits == 0 then setting bit 31 is unavoidable. \ - * Simply apply the maximum possible reduction in that \ - * case. Otherwise the MSB of ___bits indicates the \ - * best reduction we should apply. \ - */ \ - if (!___bits) { \ - ___p /= (___m & -___m); \ - ___m /= (___m & -___m); \ - } else { \ - ___p >>= ilog2(___bits); \ - ___m >>= ilog2(___bits); \ - } \ + /* Reduce m / p */ \ + ___p /= (___m & -___m); \ + ___m /= (___m & -___m); \ /* No bias needed. */ \ ___bias = 0; \ } \ \ /* \ - * Now we have a combination of 2 conditions: \ - * \ - * 1) whether or not we need to apply a bias, and \ - * \ - * 2) whether or not there might be an overflow in the cross \ - * product determined by (___m & ((1 << 63) | (1 << 31))). \ - * \ - * Select the best way to do (m_bias + m * n) / (1 << 64). \ + * Perform (m_bias + m * n) / (1 << 64). \ * From now on there will be actual runtime code generated. \ */ \ - ___res = __arch_xprod_64(___m, ___n, ___bias); \ + ___res = __xprod_64(___m, ___n, ___bias); \ \ ___res /= ___p; \ }) -#ifndef __arch_xprod_64 /* - * Default C implementation for __arch_xprod_64() - * - * Prototype: uint64_t __arch_xprod_64(const uint64_t m, uint64_t n, bool bias) * Semantic: retval = ((bias ? m : 0) + m * n) >> 64 * * The product is a 128-bit value, scaled down to 64 bits. - * Assuming constant propagation to optimize away unused conditional code. - * Architectures may provide their own optimized assembly implementation. */ -static inline uint64_t __arch_xprod_64(const uint64_t m, uint64_t n, bool bias) +static inline uint64_t __xprod_64(const uint64_t m, uint64_t n, bool bias) { - uint32_t m_lo = m; - uint32_t m_hi = m >> 32; - uint32_t n_lo = n; - uint32_t n_hi = n >> 32; - uint64_t res; - uint32_t res_lo, res_hi, tmp; - - if (!bias) { - res = ((uint64_t)m_lo * n_lo) >> 32; - } else if (!(m & ((1ULL << 63) | (1ULL << 31)))) { - /* there can't be any overflow here */ - res = (m + (uint64_t)m_lo * n_lo) >> 32; - } else { - res = m + (uint64_t)m_lo * n_lo; - res_lo = res >> 32; - res_hi = (res_lo < m_hi); - res = res_lo | ((uint64_t)res_hi << 32); - } - - if (!(m & ((1ULL << 63) | (1ULL << 31)))) { - /* there can't be any overflow here */ - res += (uint64_t)m_lo * n_hi; - res += (uint64_t)m_hi * n_lo; - res >>= 32; - } else { - res += (uint64_t)m_lo * n_hi; - tmp = res >> 32; - res += (uint64_t)m_hi * n_lo; - res_lo = res >> 32; - res_hi = (res_lo < tmp); - res = res_lo | ((uint64_t)res_hi << 32); - } - - res += (uint64_t)m_hi * n_hi; - - return res; -} + union { + uint64_t v; + struct { +#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ + uint32_t l; + uint32_t h; +#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ + uint32_t h; + uint32_t l; +#else +#error "unknown endianness" #endif + }; + } A, B, X, Y, Z; + + A.v = m; + B.v = n; + + X.v = (uint64_t)A.l * B.l + (bias ? m : 0); + Y.v = (uint64_t)A.l * B.h + X.h; + Z.v = (uint64_t)A.h * B.h + Y.h; + Y.v = (uint64_t)A.h * B.l + Y.l; + Z.v += Y.h; + + return Z.v; +} #ifndef __div64_32 extern uint32_t __div64_32(uint64_t *dividend, uint32_t divisor); -- 2.45.2