The mm_cid code in sched/sched.h is only used from sched/core.c. Move it to the compile unit where it belongs. While reviewing mm_cid functions which were already in sched/core.c, I noticed that a few of them are non-static even though they are only used from core.c. Make those functions static inline. For sake of keeping things consistent, mm_cid functions only marked "static" are now marked "static inline". The variables cid_lock and use_cid_lock are only used from core.c, mark them as static. Moving from non-static to static inline for: - sched_mm_cid_migrate_from - init_sched_mm_cid - task_tick_mm_cid And the forced inlining of: - __sched_mm_cid_migrate_from_fetch_cid - __sched_mm_cid_migrate_from_try_steal_cid - sched_mm_cid_migrate_to - sched_mm_cid_remote_clear - sched_mm_cid_remote_clear_old - sched_mm_cid_remote_clear_weight slightly improves the size of sched/core.o on x86-64 (in bytes): text data before: 192261 58677 after: 191629 58641 ----------------------------- delta: -632 -36 Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@xxxxxxxxxxxx> Cc: Ingo Molnar <mingo@xxxxxxxxxx> Cc: Peter Zijlstra <peterz@xxxxxxxxxxxxx> --- kernel/sched/core.c | 277 +++++++++++++++++++++++++++++++++++++++---- kernel/sched/sched.h | 241 ------------------------------------- 2 files changed, 257 insertions(+), 261 deletions(-) diff --git a/kernel/sched/core.c b/kernel/sched/core.c index 7019a40457a6..57b03d874530 100644 --- a/kernel/sched/core.c +++ b/kernel/sched/core.c @@ -457,6 +457,22 @@ sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { } #endif /* CONFIG_SCHED_CORE */ +#ifdef CONFIG_SCHED_MM_CID +static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, + struct task_struct *next); +static inline void sched_mm_cid_migrate_from(struct task_struct *t); +static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t); +static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr); +static inline void init_sched_mm_cid(struct task_struct *t); +#else +static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, + struct task_struct *next) { } +static inline void sched_mm_cid_migrate_from(struct task_struct *t) { } +static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { } +static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { } +static inline void init_sched_mm_cid(struct task_struct *t) { } +#endif + /* * Serialization rules: * @@ -11551,6 +11567,9 @@ void call_trace_sched_update_nr_running(struct rq *rq, int count) #ifdef CONFIG_SCHED_MM_CID +#define SCHED_MM_CID_PERIOD_NS (100ULL * 1000000) /* 100ms */ +#define MM_CID_SCAN_DELAY 100 /* 100ms */ + /* * @cid_lock: Guarantee forward-progress of cid allocation. * @@ -11558,7 +11577,7 @@ void call_trace_sched_update_nr_running(struct rq *rq, int count) * is only used when contention is detected by the lock-free allocation so * forward progress can be guaranteed. */ -DEFINE_RAW_SPINLOCK(cid_lock); +static DEFINE_RAW_SPINLOCK(cid_lock); /* * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock. @@ -11569,7 +11588,7 @@ DEFINE_RAW_SPINLOCK(cid_lock); * completes and sets @use_cid_lock back to 0. This guarantees forward progress * of a cid allocation. */ -int use_cid_lock; +static int use_cid_lock; /* * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid @@ -11659,15 +11678,233 @@ int use_cid_lock; * because this would UNSET a cid which is actively used. */ -void sched_mm_cid_migrate_from(struct task_struct *t) +static inline void __mm_cid_put(struct mm_struct *mm, int cid) +{ + if (cid < 0) + return; + cpumask_clear_cpu(cid, mm_cidmask(mm)); +} + +/* + * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to + * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to + * be held to transition to other states. + * + * State transitions synchronized with cmpxchg or try_cmpxchg need to be + * consistent across cpus, which prevents use of this_cpu_cmpxchg. + */ +static inline void mm_cid_put_lazy(struct task_struct *t) +{ + struct mm_struct *mm = t->mm; + struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; + int cid; + + lockdep_assert_irqs_disabled(); + cid = __this_cpu_read(pcpu_cid->cid); + if (!mm_cid_is_lazy_put(cid) || + !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET)) + return; + __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); +} + +static inline int mm_cid_pcpu_unset(struct mm_struct *mm) +{ + struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; + int cid, res; + + lockdep_assert_irqs_disabled(); + cid = __this_cpu_read(pcpu_cid->cid); + for (;;) { + if (mm_cid_is_unset(cid)) + return MM_CID_UNSET; + /* + * Attempt transition from valid or lazy-put to unset. + */ + res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET); + if (res == cid) + break; + cid = res; + } + return cid; +} + +static inline void mm_cid_put(struct mm_struct *mm) +{ + int cid; + + lockdep_assert_irqs_disabled(); + cid = mm_cid_pcpu_unset(mm); + if (cid == MM_CID_UNSET) + return; + __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); +} + +static inline int __mm_cid_try_get(struct mm_struct *mm) +{ + struct cpumask *cpumask; + int cid; + + cpumask = mm_cidmask(mm); + /* + * Retry finding first zero bit if the mask is temporarily + * filled. This only happens during concurrent remote-clear + * which owns a cid without holding a rq lock. + */ + for (;;) { + cid = cpumask_first_zero(cpumask); + if (cid < nr_cpu_ids) + break; + cpu_relax(); + } + if (cpumask_test_and_set_cpu(cid, cpumask)) + return -1; + return cid; +} + +/* + * Save a snapshot of the current runqueue time of this cpu + * with the per-cpu cid value, allowing to estimate how recently it was used. + */ +static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm) +{ + struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq)); + + lockdep_assert_rq_held(rq); + WRITE_ONCE(pcpu_cid->time, rq->clock); +} + +static inline int __mm_cid_get(struct rq *rq, struct mm_struct *mm) +{ + int cid; + + /* + * All allocations (even those using the cid_lock) are lock-free. If + * use_cid_lock is set, hold the cid_lock to perform cid allocation to + * guarantee forward progress. + */ + if (!READ_ONCE(use_cid_lock)) { + cid = __mm_cid_try_get(mm); + if (cid >= 0) + goto end; + raw_spin_lock(&cid_lock); + } else { + raw_spin_lock(&cid_lock); + cid = __mm_cid_try_get(mm); + if (cid >= 0) + goto unlock; + } + + /* + * cid concurrently allocated. Retry while forcing following + * allocations to use the cid_lock to ensure forward progress. + */ + WRITE_ONCE(use_cid_lock, 1); + /* + * Set use_cid_lock before allocation. Only care about program order + * because this is only required for forward progress. + */ + barrier(); + /* + * Retry until it succeeds. It is guaranteed to eventually succeed once + * all newcoming allocations observe the use_cid_lock flag set. + */ + do { + cid = __mm_cid_try_get(mm); + cpu_relax(); + } while (cid < 0); + /* + * Allocate before clearing use_cid_lock. Only care about + * program order because this is for forward progress. + */ + barrier(); + WRITE_ONCE(use_cid_lock, 0); +unlock: + raw_spin_unlock(&cid_lock); +end: + mm_cid_snapshot_time(rq, mm); + return cid; +} + +static inline int mm_cid_get(struct rq *rq, struct mm_struct *mm) +{ + struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; + struct cpumask *cpumask; + int cid; + + lockdep_assert_rq_held(rq); + cpumask = mm_cidmask(mm); + cid = __this_cpu_read(pcpu_cid->cid); + if (mm_cid_is_valid(cid)) { + mm_cid_snapshot_time(rq, mm); + return cid; + } + if (mm_cid_is_lazy_put(cid)) { + if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET)) + __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); + } + cid = __mm_cid_get(rq, mm); + __this_cpu_write(pcpu_cid->cid, cid); + return cid; +} + +static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, + struct task_struct *next) +{ + /* + * Provide a memory barrier between rq->curr store and load of + * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition. + * + * Should be adapted if context_switch() is modified. + */ + if (!next->mm) { // to kernel + /* + * user -> kernel transition does not guarantee a barrier, but + * we can use the fact that it performs an atomic operation in + * mmgrab(). + */ + if (prev->mm) // from user + smp_mb__after_mmgrab(); + /* + * kernel -> kernel transition does not change rq->curr->mm + * state. It stays NULL. + */ + } else { // to user + /* + * kernel -> user transition does not provide a barrier + * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu]. + * Provide it here. + */ + if (!prev->mm) { // from kernel + smp_mb(); + } else { // from user + /* + * user -> user transition relies on an implicit + * memory barrier in switch_mm() when + * current->mm changes. If the architecture + * switch_mm() does not have an implicit memory + * barrier, it is emitted here. If current->mm + * is unchanged, no barrier is needed. + */ + smp_mb__after_switch_mm(); + } + } + if (prev->mm_cid_active) { + mm_cid_snapshot_time(rq, prev->mm); + mm_cid_put_lazy(prev); + prev->mm_cid = -1; + } + if (next->mm_cid_active) + next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next->mm); +} + +static inline void sched_mm_cid_migrate_from(struct task_struct *t) { t->migrate_from_cpu = task_cpu(t); } -static -int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq, - struct task_struct *t, - struct mm_cid *src_pcpu_cid) +static inline int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq, + struct task_struct *t, + struct mm_cid *src_pcpu_cid) { struct mm_struct *mm = t->mm; struct task_struct *src_task; @@ -11703,11 +11940,10 @@ int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq, return src_cid; } -static -int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq, - struct task_struct *t, - struct mm_cid *src_pcpu_cid, - int src_cid) +static inline int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq, + struct task_struct *t, + struct mm_cid *src_pcpu_cid, + int src_cid) { struct task_struct *src_task; struct mm_struct *mm = t->mm; @@ -11767,7 +12003,7 @@ int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq, * Interrupts are disabled, which keeps the window of cid ownership without the * source rq lock held small. */ -void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) +static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { struct mm_cid *src_pcpu_cid, *dst_pcpu_cid; struct mm_struct *mm = t->mm; @@ -11820,8 +12056,9 @@ void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) WRITE_ONCE(dst_pcpu_cid->cid, src_cid); } -static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid, - int cpu) +static inline void sched_mm_cid_remote_clear(struct mm_struct *mm, + struct mm_cid *pcpu_cid, + int cpu) { struct rq *rq = cpu_rq(cpu); struct task_struct *t; @@ -11876,7 +12113,7 @@ static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_ } } -static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu) +static inline void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu) { struct rq *rq = cpu_rq(cpu); struct mm_cid *pcpu_cid; @@ -11908,8 +12145,8 @@ static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu) sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); } -static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu, - int weight) +static inline void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu, + int weight) { struct mm_cid *pcpu_cid; int cid; @@ -11965,7 +12202,7 @@ static void task_mm_cid_work(struct callback_head *work) sched_mm_cid_remote_clear_weight(mm, cpu, weight); } -void init_sched_mm_cid(struct task_struct *t) +static inline void init_sched_mm_cid(struct task_struct *t) { struct mm_struct *mm = t->mm; int mm_users = 0; @@ -11979,7 +12216,7 @@ void init_sched_mm_cid(struct task_struct *t) init_task_work(&t->cid_work, task_mm_cid_work); } -void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) +static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { struct callback_head *work = &curr->cid_work; unsigned long now = jiffies; diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h index d2895d264196..1b8e3e23ef40 100644 --- a/kernel/sched/sched.h +++ b/kernel/sched/sched.h @@ -3237,247 +3237,6 @@ extern int sched_dynamic_mode(const char *str); extern void sched_dynamic_update(int mode); #endif -#ifdef CONFIG_SCHED_MM_CID - -#define SCHED_MM_CID_PERIOD_NS (100ULL * 1000000) /* 100ms */ -#define MM_CID_SCAN_DELAY 100 /* 100ms */ - -extern raw_spinlock_t cid_lock; -extern int use_cid_lock; - -extern void sched_mm_cid_migrate_from(struct task_struct *t); -extern void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t); -extern void task_tick_mm_cid(struct rq *rq, struct task_struct *curr); -extern void init_sched_mm_cid(struct task_struct *t); - -static inline void __mm_cid_put(struct mm_struct *mm, int cid) -{ - if (cid < 0) - return; - cpumask_clear_cpu(cid, mm_cidmask(mm)); -} - -/* - * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to - * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to - * be held to transition to other states. - * - * State transitions synchronized with cmpxchg or try_cmpxchg need to be - * consistent across cpus, which prevents use of this_cpu_cmpxchg. - */ -static inline void mm_cid_put_lazy(struct task_struct *t) -{ - struct mm_struct *mm = t->mm; - struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; - int cid; - - lockdep_assert_irqs_disabled(); - cid = __this_cpu_read(pcpu_cid->cid); - if (!mm_cid_is_lazy_put(cid) || - !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET)) - return; - __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); -} - -static inline int mm_cid_pcpu_unset(struct mm_struct *mm) -{ - struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; - int cid, res; - - lockdep_assert_irqs_disabled(); - cid = __this_cpu_read(pcpu_cid->cid); - for (;;) { - if (mm_cid_is_unset(cid)) - return MM_CID_UNSET; - /* - * Attempt transition from valid or lazy-put to unset. - */ - res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET); - if (res == cid) - break; - cid = res; - } - return cid; -} - -static inline void mm_cid_put(struct mm_struct *mm) -{ - int cid; - - lockdep_assert_irqs_disabled(); - cid = mm_cid_pcpu_unset(mm); - if (cid == MM_CID_UNSET) - return; - __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); -} - -static inline int __mm_cid_try_get(struct mm_struct *mm) -{ - struct cpumask *cpumask; - int cid; - - cpumask = mm_cidmask(mm); - /* - * Retry finding first zero bit if the mask is temporarily - * filled. This only happens during concurrent remote-clear - * which owns a cid without holding a rq lock. - */ - for (;;) { - cid = cpumask_first_zero(cpumask); - if (cid < nr_cpu_ids) - break; - cpu_relax(); - } - if (cpumask_test_and_set_cpu(cid, cpumask)) - return -1; - return cid; -} - -/* - * Save a snapshot of the current runqueue time of this cpu - * with the per-cpu cid value, allowing to estimate how recently it was used. - */ -static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm) -{ - struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq)); - - lockdep_assert_rq_held(rq); - WRITE_ONCE(pcpu_cid->time, rq->clock); -} - -static inline int __mm_cid_get(struct rq *rq, struct mm_struct *mm) -{ - int cid; - - /* - * All allocations (even those using the cid_lock) are lock-free. If - * use_cid_lock is set, hold the cid_lock to perform cid allocation to - * guarantee forward progress. - */ - if (!READ_ONCE(use_cid_lock)) { - cid = __mm_cid_try_get(mm); - if (cid >= 0) - goto end; - raw_spin_lock(&cid_lock); - } else { - raw_spin_lock(&cid_lock); - cid = __mm_cid_try_get(mm); - if (cid >= 0) - goto unlock; - } - - /* - * cid concurrently allocated. Retry while forcing following - * allocations to use the cid_lock to ensure forward progress. - */ - WRITE_ONCE(use_cid_lock, 1); - /* - * Set use_cid_lock before allocation. Only care about program order - * because this is only required for forward progress. - */ - barrier(); - /* - * Retry until it succeeds. It is guaranteed to eventually succeed once - * all newcoming allocations observe the use_cid_lock flag set. - */ - do { - cid = __mm_cid_try_get(mm); - cpu_relax(); - } while (cid < 0); - /* - * Allocate before clearing use_cid_lock. Only care about - * program order because this is for forward progress. - */ - barrier(); - WRITE_ONCE(use_cid_lock, 0); -unlock: - raw_spin_unlock(&cid_lock); -end: - mm_cid_snapshot_time(rq, mm); - return cid; -} - -static inline int mm_cid_get(struct rq *rq, struct mm_struct *mm) -{ - struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; - struct cpumask *cpumask; - int cid; - - lockdep_assert_rq_held(rq); - cpumask = mm_cidmask(mm); - cid = __this_cpu_read(pcpu_cid->cid); - if (mm_cid_is_valid(cid)) { - mm_cid_snapshot_time(rq, mm); - return cid; - } - if (mm_cid_is_lazy_put(cid)) { - if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET)) - __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); - } - cid = __mm_cid_get(rq, mm); - __this_cpu_write(pcpu_cid->cid, cid); - return cid; -} - -static inline void switch_mm_cid(struct rq *rq, - struct task_struct *prev, - struct task_struct *next) -{ - /* - * Provide a memory barrier between rq->curr store and load of - * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition. - * - * Should be adapted if context_switch() is modified. - */ - if (!next->mm) { // to kernel - /* - * user -> kernel transition does not guarantee a barrier, but - * we can use the fact that it performs an atomic operation in - * mmgrab(). - */ - if (prev->mm) // from user - smp_mb__after_mmgrab(); - /* - * kernel -> kernel transition does not change rq->curr->mm - * state. It stays NULL. - */ - } else { // to user - /* - * kernel -> user transition does not provide a barrier - * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu]. - * Provide it here. - */ - if (!prev->mm) { // from kernel - smp_mb(); - } else { // from user - /* - * user -> user transition relies on an implicit - * memory barrier in switch_mm() when - * current->mm changes. If the architecture - * switch_mm() does not have an implicit memory - * barrier, it is emitted here. If current->mm - * is unchanged, no barrier is needed. - */ - smp_mb__after_switch_mm(); - } - } - if (prev->mm_cid_active) { - mm_cid_snapshot_time(rq, prev->mm); - mm_cid_put_lazy(prev); - prev->mm_cid = -1; - } - if (next->mm_cid_active) - next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next->mm); -} - -#else -static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, struct task_struct *next) { } -static inline void sched_mm_cid_migrate_from(struct task_struct *t) { } -static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { } -static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { } -static inline void init_sched_mm_cid(struct task_struct *t) { } -#endif - extern u64 avg_vruntime(struct cfs_rq *cfs_rq); extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se); -- 2.39.2