[PATCH 2/2] sched: Move mm_cid code from sched.h to core.c

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



The mm_cid code in sched/sched.h is only used from sched/core.c. Move it
to the compile unit where it belongs.

While reviewing mm_cid functions which were already in sched/core.c, I
noticed that a few of them are non-static even though they are only used
from core.c. Make those functions static inline. For sake of keeping
things consistent, mm_cid functions only marked "static" are now marked
"static inline". The variables cid_lock and use_cid_lock are only used
from core.c, mark them as static.

Moving from non-static to static inline for:

- sched_mm_cid_migrate_from
- init_sched_mm_cid
- task_tick_mm_cid

And the forced inlining of:

- __sched_mm_cid_migrate_from_fetch_cid
- __sched_mm_cid_migrate_from_try_steal_cid
- sched_mm_cid_migrate_to
- sched_mm_cid_remote_clear
- sched_mm_cid_remote_clear_old
- sched_mm_cid_remote_clear_weight

slightly improves the size of sched/core.o on x86-64 (in bytes):

           text          data
before:  192261         58677
after:   191629         58641
-----------------------------
delta:     -632           -36

Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@xxxxxxxxxxxx>
Cc: Ingo Molnar <mingo@xxxxxxxxxx>
Cc: Peter Zijlstra <peterz@xxxxxxxxxxxxx>
---
 kernel/sched/core.c  | 277 +++++++++++++++++++++++++++++++++++++++----
 kernel/sched/sched.h | 241 -------------------------------------
 2 files changed, 257 insertions(+), 261 deletions(-)

diff --git a/kernel/sched/core.c b/kernel/sched/core.c
index 7019a40457a6..57b03d874530 100644
--- a/kernel/sched/core.c
+++ b/kernel/sched/core.c
@@ -457,6 +457,22 @@ sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
 
 #endif /* CONFIG_SCHED_CORE */
 
+#ifdef CONFIG_SCHED_MM_CID
+static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev,
+				 struct task_struct *next);
+static inline void sched_mm_cid_migrate_from(struct task_struct *t);
+static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t);
+static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr);
+static inline void init_sched_mm_cid(struct task_struct *t);
+#else
+static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev,
+				 struct task_struct *next) { }
+static inline void sched_mm_cid_migrate_from(struct task_struct *t) { }
+static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { }
+static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { }
+static inline void init_sched_mm_cid(struct task_struct *t) { }
+#endif
+
 /*
  * Serialization rules:
  *
@@ -11551,6 +11567,9 @@ void call_trace_sched_update_nr_running(struct rq *rq, int count)
 
 #ifdef CONFIG_SCHED_MM_CID
 
+#define SCHED_MM_CID_PERIOD_NS	(100ULL * 1000000)	/* 100ms */
+#define MM_CID_SCAN_DELAY	100			/* 100ms */
+
 /*
  * @cid_lock: Guarantee forward-progress of cid allocation.
  *
@@ -11558,7 +11577,7 @@ void call_trace_sched_update_nr_running(struct rq *rq, int count)
  * is only used when contention is detected by the lock-free allocation so
  * forward progress can be guaranteed.
  */
-DEFINE_RAW_SPINLOCK(cid_lock);
+static DEFINE_RAW_SPINLOCK(cid_lock);
 
 /*
  * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
@@ -11569,7 +11588,7 @@ DEFINE_RAW_SPINLOCK(cid_lock);
  * completes and sets @use_cid_lock back to 0. This guarantees forward progress
  * of a cid allocation.
  */
-int use_cid_lock;
+static int use_cid_lock;
 
 /*
  * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
@@ -11659,15 +11678,233 @@ int use_cid_lock;
  * because this would UNSET a cid which is actively used.
  */
 
-void sched_mm_cid_migrate_from(struct task_struct *t)
+static inline void __mm_cid_put(struct mm_struct *mm, int cid)
+{
+	if (cid < 0)
+		return;
+	cpumask_clear_cpu(cid, mm_cidmask(mm));
+}
+
+/*
+ * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to
+ * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to
+ * be held to transition to other states.
+ *
+ * State transitions synchronized with cmpxchg or try_cmpxchg need to be
+ * consistent across cpus, which prevents use of this_cpu_cmpxchg.
+ */
+static inline void mm_cid_put_lazy(struct task_struct *t)
+{
+	struct mm_struct *mm = t->mm;
+	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
+	int cid;
+
+	lockdep_assert_irqs_disabled();
+	cid = __this_cpu_read(pcpu_cid->cid);
+	if (!mm_cid_is_lazy_put(cid) ||
+	    !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
+		return;
+	__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
+}
+
+static inline int mm_cid_pcpu_unset(struct mm_struct *mm)
+{
+	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
+	int cid, res;
+
+	lockdep_assert_irqs_disabled();
+	cid = __this_cpu_read(pcpu_cid->cid);
+	for (;;) {
+		if (mm_cid_is_unset(cid))
+			return MM_CID_UNSET;
+		/*
+		 * Attempt transition from valid or lazy-put to unset.
+		 */
+		res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET);
+		if (res == cid)
+			break;
+		cid = res;
+	}
+	return cid;
+}
+
+static inline void mm_cid_put(struct mm_struct *mm)
+{
+	int cid;
+
+	lockdep_assert_irqs_disabled();
+	cid = mm_cid_pcpu_unset(mm);
+	if (cid == MM_CID_UNSET)
+		return;
+	__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
+}
+
+static inline int __mm_cid_try_get(struct mm_struct *mm)
+{
+	struct cpumask *cpumask;
+	int cid;
+
+	cpumask = mm_cidmask(mm);
+	/*
+	 * Retry finding first zero bit if the mask is temporarily
+	 * filled. This only happens during concurrent remote-clear
+	 * which owns a cid without holding a rq lock.
+	 */
+	for (;;) {
+		cid = cpumask_first_zero(cpumask);
+		if (cid < nr_cpu_ids)
+			break;
+		cpu_relax();
+	}
+	if (cpumask_test_and_set_cpu(cid, cpumask))
+		return -1;
+	return cid;
+}
+
+/*
+ * Save a snapshot of the current runqueue time of this cpu
+ * with the per-cpu cid value, allowing to estimate how recently it was used.
+ */
+static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm)
+{
+	struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq));
+
+	lockdep_assert_rq_held(rq);
+	WRITE_ONCE(pcpu_cid->time, rq->clock);
+}
+
+static inline int __mm_cid_get(struct rq *rq, struct mm_struct *mm)
+{
+	int cid;
+
+	/*
+	 * All allocations (even those using the cid_lock) are lock-free. If
+	 * use_cid_lock is set, hold the cid_lock to perform cid allocation to
+	 * guarantee forward progress.
+	 */
+	if (!READ_ONCE(use_cid_lock)) {
+		cid = __mm_cid_try_get(mm);
+		if (cid >= 0)
+			goto end;
+		raw_spin_lock(&cid_lock);
+	} else {
+		raw_spin_lock(&cid_lock);
+		cid = __mm_cid_try_get(mm);
+		if (cid >= 0)
+			goto unlock;
+	}
+
+	/*
+	 * cid concurrently allocated. Retry while forcing following
+	 * allocations to use the cid_lock to ensure forward progress.
+	 */
+	WRITE_ONCE(use_cid_lock, 1);
+	/*
+	 * Set use_cid_lock before allocation. Only care about program order
+	 * because this is only required for forward progress.
+	 */
+	barrier();
+	/*
+	 * Retry until it succeeds. It is guaranteed to eventually succeed once
+	 * all newcoming allocations observe the use_cid_lock flag set.
+	 */
+	do {
+		cid = __mm_cid_try_get(mm);
+		cpu_relax();
+	} while (cid < 0);
+	/*
+	 * Allocate before clearing use_cid_lock. Only care about
+	 * program order because this is for forward progress.
+	 */
+	barrier();
+	WRITE_ONCE(use_cid_lock, 0);
+unlock:
+	raw_spin_unlock(&cid_lock);
+end:
+	mm_cid_snapshot_time(rq, mm);
+	return cid;
+}
+
+static inline int mm_cid_get(struct rq *rq, struct mm_struct *mm)
+{
+	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
+	struct cpumask *cpumask;
+	int cid;
+
+	lockdep_assert_rq_held(rq);
+	cpumask = mm_cidmask(mm);
+	cid = __this_cpu_read(pcpu_cid->cid);
+	if (mm_cid_is_valid(cid)) {
+		mm_cid_snapshot_time(rq, mm);
+		return cid;
+	}
+	if (mm_cid_is_lazy_put(cid)) {
+		if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
+			__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
+	}
+	cid = __mm_cid_get(rq, mm);
+	__this_cpu_write(pcpu_cid->cid, cid);
+	return cid;
+}
+
+static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev,
+				 struct task_struct *next)
+{
+	/*
+	 * Provide a memory barrier between rq->curr store and load of
+	 * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition.
+	 *
+	 * Should be adapted if context_switch() is modified.
+	 */
+	if (!next->mm) {                                // to kernel
+		/*
+		 * user -> kernel transition does not guarantee a barrier, but
+		 * we can use the fact that it performs an atomic operation in
+		 * mmgrab().
+		 */
+		if (prev->mm)                           // from user
+			smp_mb__after_mmgrab();
+		/*
+		 * kernel -> kernel transition does not change rq->curr->mm
+		 * state. It stays NULL.
+		 */
+	} else {                                        // to user
+		/*
+		 * kernel -> user transition does not provide a barrier
+		 * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu].
+		 * Provide it here.
+		 */
+		if (!prev->mm) {                        // from kernel
+			smp_mb();
+		} else {				// from user
+			/*
+			 * user -> user transition relies on an implicit
+			 * memory barrier in switch_mm() when
+			 * current->mm changes. If the architecture
+			 * switch_mm() does not have an implicit memory
+			 * barrier, it is emitted here.  If current->mm
+			 * is unchanged, no barrier is needed.
+			 */
+			smp_mb__after_switch_mm();
+		}
+	}
+	if (prev->mm_cid_active) {
+		mm_cid_snapshot_time(rq, prev->mm);
+		mm_cid_put_lazy(prev);
+		prev->mm_cid = -1;
+	}
+	if (next->mm_cid_active)
+		next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next->mm);
+}
+
+static inline void sched_mm_cid_migrate_from(struct task_struct *t)
 {
 	t->migrate_from_cpu = task_cpu(t);
 }
 
-static
-int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
-					  struct task_struct *t,
-					  struct mm_cid *src_pcpu_cid)
+static inline int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
+							struct task_struct *t,
+							struct mm_cid *src_pcpu_cid)
 {
 	struct mm_struct *mm = t->mm;
 	struct task_struct *src_task;
@@ -11703,11 +11940,10 @@ int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
 	return src_cid;
 }
 
-static
-int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
-					      struct task_struct *t,
-					      struct mm_cid *src_pcpu_cid,
-					      int src_cid)
+static inline int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
+							    struct task_struct *t,
+							    struct mm_cid *src_pcpu_cid,
+							    int src_cid)
 {
 	struct task_struct *src_task;
 	struct mm_struct *mm = t->mm;
@@ -11767,7 +12003,7 @@ int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
  * Interrupts are disabled, which keeps the window of cid ownership without the
  * source rq lock held small.
  */
-void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
+static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
 {
 	struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
 	struct mm_struct *mm = t->mm;
@@ -11820,8 +12056,9 @@ void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
 	WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
 }
 
-static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
-				      int cpu)
+static inline void sched_mm_cid_remote_clear(struct mm_struct *mm,
+					     struct mm_cid *pcpu_cid,
+					     int cpu)
 {
 	struct rq *rq = cpu_rq(cpu);
 	struct task_struct *t;
@@ -11876,7 +12113,7 @@ static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_
 	}
 }
 
-static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
+static inline void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
 {
 	struct rq *rq = cpu_rq(cpu);
 	struct mm_cid *pcpu_cid;
@@ -11908,8 +12145,8 @@ static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
 }
 
-static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
-					     int weight)
+static inline void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
+						    int weight)
 {
 	struct mm_cid *pcpu_cid;
 	int cid;
@@ -11965,7 +12202,7 @@ static void task_mm_cid_work(struct callback_head *work)
 		sched_mm_cid_remote_clear_weight(mm, cpu, weight);
 }
 
-void init_sched_mm_cid(struct task_struct *t)
+static inline void init_sched_mm_cid(struct task_struct *t)
 {
 	struct mm_struct *mm = t->mm;
 	int mm_users = 0;
@@ -11979,7 +12216,7 @@ void init_sched_mm_cid(struct task_struct *t)
 	init_task_work(&t->cid_work, task_mm_cid_work);
 }
 
-void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
+static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
 {
 	struct callback_head *work = &curr->cid_work;
 	unsigned long now = jiffies;
diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h
index d2895d264196..1b8e3e23ef40 100644
--- a/kernel/sched/sched.h
+++ b/kernel/sched/sched.h
@@ -3237,247 +3237,6 @@ extern int sched_dynamic_mode(const char *str);
 extern void sched_dynamic_update(int mode);
 #endif
 
-#ifdef CONFIG_SCHED_MM_CID
-
-#define SCHED_MM_CID_PERIOD_NS	(100ULL * 1000000)	/* 100ms */
-#define MM_CID_SCAN_DELAY	100			/* 100ms */
-
-extern raw_spinlock_t cid_lock;
-extern int use_cid_lock;
-
-extern void sched_mm_cid_migrate_from(struct task_struct *t);
-extern void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t);
-extern void task_tick_mm_cid(struct rq *rq, struct task_struct *curr);
-extern void init_sched_mm_cid(struct task_struct *t);
-
-static inline void __mm_cid_put(struct mm_struct *mm, int cid)
-{
-	if (cid < 0)
-		return;
-	cpumask_clear_cpu(cid, mm_cidmask(mm));
-}
-
-/*
- * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to
- * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to
- * be held to transition to other states.
- *
- * State transitions synchronized with cmpxchg or try_cmpxchg need to be
- * consistent across cpus, which prevents use of this_cpu_cmpxchg.
- */
-static inline void mm_cid_put_lazy(struct task_struct *t)
-{
-	struct mm_struct *mm = t->mm;
-	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
-	int cid;
-
-	lockdep_assert_irqs_disabled();
-	cid = __this_cpu_read(pcpu_cid->cid);
-	if (!mm_cid_is_lazy_put(cid) ||
-	    !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
-		return;
-	__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
-}
-
-static inline int mm_cid_pcpu_unset(struct mm_struct *mm)
-{
-	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
-	int cid, res;
-
-	lockdep_assert_irqs_disabled();
-	cid = __this_cpu_read(pcpu_cid->cid);
-	for (;;) {
-		if (mm_cid_is_unset(cid))
-			return MM_CID_UNSET;
-		/*
-		 * Attempt transition from valid or lazy-put to unset.
-		 */
-		res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET);
-		if (res == cid)
-			break;
-		cid = res;
-	}
-	return cid;
-}
-
-static inline void mm_cid_put(struct mm_struct *mm)
-{
-	int cid;
-
-	lockdep_assert_irqs_disabled();
-	cid = mm_cid_pcpu_unset(mm);
-	if (cid == MM_CID_UNSET)
-		return;
-	__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
-}
-
-static inline int __mm_cid_try_get(struct mm_struct *mm)
-{
-	struct cpumask *cpumask;
-	int cid;
-
-	cpumask = mm_cidmask(mm);
-	/*
-	 * Retry finding first zero bit if the mask is temporarily
-	 * filled. This only happens during concurrent remote-clear
-	 * which owns a cid without holding a rq lock.
-	 */
-	for (;;) {
-		cid = cpumask_first_zero(cpumask);
-		if (cid < nr_cpu_ids)
-			break;
-		cpu_relax();
-	}
-	if (cpumask_test_and_set_cpu(cid, cpumask))
-		return -1;
-	return cid;
-}
-
-/*
- * Save a snapshot of the current runqueue time of this cpu
- * with the per-cpu cid value, allowing to estimate how recently it was used.
- */
-static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm)
-{
-	struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq));
-
-	lockdep_assert_rq_held(rq);
-	WRITE_ONCE(pcpu_cid->time, rq->clock);
-}
-
-static inline int __mm_cid_get(struct rq *rq, struct mm_struct *mm)
-{
-	int cid;
-
-	/*
-	 * All allocations (even those using the cid_lock) are lock-free. If
-	 * use_cid_lock is set, hold the cid_lock to perform cid allocation to
-	 * guarantee forward progress.
-	 */
-	if (!READ_ONCE(use_cid_lock)) {
-		cid = __mm_cid_try_get(mm);
-		if (cid >= 0)
-			goto end;
-		raw_spin_lock(&cid_lock);
-	} else {
-		raw_spin_lock(&cid_lock);
-		cid = __mm_cid_try_get(mm);
-		if (cid >= 0)
-			goto unlock;
-	}
-
-	/*
-	 * cid concurrently allocated. Retry while forcing following
-	 * allocations to use the cid_lock to ensure forward progress.
-	 */
-	WRITE_ONCE(use_cid_lock, 1);
-	/*
-	 * Set use_cid_lock before allocation. Only care about program order
-	 * because this is only required for forward progress.
-	 */
-	barrier();
-	/*
-	 * Retry until it succeeds. It is guaranteed to eventually succeed once
-	 * all newcoming allocations observe the use_cid_lock flag set.
-	 */
-	do {
-		cid = __mm_cid_try_get(mm);
-		cpu_relax();
-	} while (cid < 0);
-	/*
-	 * Allocate before clearing use_cid_lock. Only care about
-	 * program order because this is for forward progress.
-	 */
-	barrier();
-	WRITE_ONCE(use_cid_lock, 0);
-unlock:
-	raw_spin_unlock(&cid_lock);
-end:
-	mm_cid_snapshot_time(rq, mm);
-	return cid;
-}
-
-static inline int mm_cid_get(struct rq *rq, struct mm_struct *mm)
-{
-	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
-	struct cpumask *cpumask;
-	int cid;
-
-	lockdep_assert_rq_held(rq);
-	cpumask = mm_cidmask(mm);
-	cid = __this_cpu_read(pcpu_cid->cid);
-	if (mm_cid_is_valid(cid)) {
-		mm_cid_snapshot_time(rq, mm);
-		return cid;
-	}
-	if (mm_cid_is_lazy_put(cid)) {
-		if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
-			__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
-	}
-	cid = __mm_cid_get(rq, mm);
-	__this_cpu_write(pcpu_cid->cid, cid);
-	return cid;
-}
-
-static inline void switch_mm_cid(struct rq *rq,
-				 struct task_struct *prev,
-				 struct task_struct *next)
-{
-	/*
-	 * Provide a memory barrier between rq->curr store and load of
-	 * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition.
-	 *
-	 * Should be adapted if context_switch() is modified.
-	 */
-	if (!next->mm) {                                // to kernel
-		/*
-		 * user -> kernel transition does not guarantee a barrier, but
-		 * we can use the fact that it performs an atomic operation in
-		 * mmgrab().
-		 */
-		if (prev->mm)                           // from user
-			smp_mb__after_mmgrab();
-		/*
-		 * kernel -> kernel transition does not change rq->curr->mm
-		 * state. It stays NULL.
-		 */
-	} else {                                        // to user
-		/*
-		 * kernel -> user transition does not provide a barrier
-		 * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu].
-		 * Provide it here.
-		 */
-		if (!prev->mm) {                        // from kernel
-			smp_mb();
-		} else {				// from user
-			/*
-			 * user -> user transition relies on an implicit
-			 * memory barrier in switch_mm() when
-			 * current->mm changes. If the architecture
-			 * switch_mm() does not have an implicit memory
-			 * barrier, it is emitted here.  If current->mm
-			 * is unchanged, no barrier is needed.
-			 */
-			smp_mb__after_switch_mm();
-		}
-	}
-	if (prev->mm_cid_active) {
-		mm_cid_snapshot_time(rq, prev->mm);
-		mm_cid_put_lazy(prev);
-		prev->mm_cid = -1;
-	}
-	if (next->mm_cid_active)
-		next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next->mm);
-}
-
-#else
-static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, struct task_struct *next) { }
-static inline void sched_mm_cid_migrate_from(struct task_struct *t) { }
-static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { }
-static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { }
-static inline void init_sched_mm_cid(struct task_struct *t) { }
-#endif
-
 extern u64 avg_vruntime(struct cfs_rq *cfs_rq);
 extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se);
 
-- 
2.39.2





[Index of Archives]     [Linux Kernel]     [Kernel Newbies]     [x86 Platform Driver]     [Netdev]     [Linux Wireless]     [Netfilter]     [Bugtraq]     [Linux Filesystems]     [Yosemite Discussion]     [MIPS Linux]     [ARM Linux]     [Linux Security]     [Linux RAID]     [Samba]     [Device Mapper]

  Powered by Linux