From: Yu-cheng Yu <yu-cheng.yu@xxxxxxxxx> Introduce a new document on Control-flow Enforcement Technology (CET). Tested-by: Pengfei Xu <pengfei.xu@xxxxxxxxx> Tested-by: John Allen <john.allen@xxxxxxx> Signed-off-by: Yu-cheng Yu <yu-cheng.yu@xxxxxxxxx> Co-developed-by: Rick Edgecombe <rick.p.edgecombe@xxxxxxxxx> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@xxxxxxxxx> Cc: Kees Cook <keescook@xxxxxxxxxxxx> --- v3: - Clarify kernel IBT is supported by the kernel. (Kees, Andrew Cooper) - Clarify which arch_prctl's can take multiple bits. (Kees) - Describe ASLR characteristics of thread shadow stacks. (Kees) - Add exec section. (Andrew Cooper) - Fix some capitalization (Bagas Sanjaya) - Update new location of enablement status proc. - Add info about new user_shstk software capability. - Add more info about what the kernel pushes to the shadow stack on signal. v2: - Updated to new arch_prctl() API - Add bit about new proc status v1: - Update and clarify the docs. - Moved kernel parameters documentation to other patch. Documentation/x86/cet.rst | 147 ++++++++++++++++++++++++++++++++++++ Documentation/x86/index.rst | 1 + 2 files changed, 148 insertions(+) create mode 100644 Documentation/x86/cet.rst diff --git a/Documentation/x86/cet.rst b/Documentation/x86/cet.rst new file mode 100644 index 000000000000..b56811566531 --- /dev/null +++ b/Documentation/x86/cet.rst @@ -0,0 +1,147 @@ +.. SPDX-License-Identifier: GPL-2.0 + +========================================= +Control-flow Enforcement Technology (CET) +========================================= + +Overview +======== + +Control-flow Enforcement Technology (CET) is term referring to several +related x86 processor features that provides protection against control +flow hijacking attacks. The HW feature itself can be set up to protect +both applications and the kernel. + +CET introduces Shadow Stack and Indirect Branch Tracking (IBT). Shadow stack +is a secondary stack allocated from memory and cannot be directly modified by +applications. When executing a CALL instruction, the processor pushes the +return address to both the normal stack and the shadow stack. Upon +function return, the processor pops the shadow stack copy and compares it +to the normal stack copy. If the two differ, the processor raises a +control-protection fault. IBT verifies indirect CALL/JMP targets are intended +as marked by the compiler with 'ENDBR' opcodes. Not all CPU's have both Shadow +Stack and Indirect Branch Tracking. Today in the 64-bit kernel, only userspace +Shadow Stack and kernel IBT is supported in the kernel. + +The Kconfig option is X86_USER_SHADOW_STACK, and it can be disabled with +the kernel parameter clearcpuid, like this: "clearcpuid=user_shstk". + +To build a user shadow stack enabled kernel, Binutils v2.29 or LLVM v6 or later +are required. + +At run time, /proc/cpuinfo shows CET features if the processor supports +CET. "shstk" and "ibt" relate to the individual HW features. "user_shstk" +relates to whether the userspace shadow stack specifically is supported. + +Application Enabling +==================== + +An application's CET capability is marked in its ELF note and can be verified +from readelf/llvm-readelf output: + + readelf -n <application> | grep -a SHSTK + properties: x86 feature: SHSTK + +The kernel does not process these applications markers directly. Applications +or loaders must enable CET features using the interface described in section 4. +Typically this would be done in dynamic loader or static runtime objects, as is +the case in GLIBC. + +CET arch_prctl()'s +================== + +Elf features should be enabled by the loader using the below arch_prctl's. + +arch_prctl(ARCH_CET_ENABLE, unsigned int feature) + Enable a single feature specified in 'feature'. Can only operate on + one feature at a time. + +arch_prctl(ARCH_CET_DISABLE, unsigned int feature) + Disable a single feature specified in 'feature'. Can only operate on + one feature at a time. + +arch_prctl(ARCH_CET_LOCK, unsigned int features) + Lock in features at their current enabled or disabled status. 'features' + is a mask of all features to lock. All bits set are processed, unset bits + are ignored. The mask is ORed with the existing value. So any feature bits + set here cannot be enabled or disabled afterwards. + +The return values are as following: + On success, return 0. On error, errno can be:: + + -EPERM if any of the passed feature are locked. + -EOPNOTSUPP if the feature is not supported by the hardware or + disabled by kernel parameter. + -EINVAL arguments (non existing feature, etc) + +Currently shadow stack and WRSS are supported via this interface. WRSS +can only be enabled with shadow stack, and is automatically disabled +if shadow stack is disabled. + +Proc status +=========== +To check if an application is actually running with shadow stack, the +user can read the /proc/$PID/status. It will report "wrss" or "shstk" +depending on what is enabled. The lines look like this:: + + x86_Thread_features: shstk wrss + x86_Thread_features_locked: shstk wrss + +The implementation of the Shadow Stack +====================================== + +Shadow Stack size +----------------- + +A task's shadow stack is allocated from memory to a fixed size of +MIN(RLIMIT_STACK, 4 GB). In other words, the shadow stack is allocated to +the maximum size of the normal stack, but capped to 4 GB. However, +a compat-mode application's address space is smaller, each of its thread's +shadow stack size is MIN(1/4 RLIMIT_STACK, 4 GB). + +Signal +------ + +By default, the main program and its signal handlers use the same shadow +stack. Because the shadow stack stores only return addresses, a large +shadow stack covers the condition that both the program stack and the +signal alternate stack run out. + +When a signal happens, the old pre-signal state is pushed on the stack. When +shadow stack is enabled, the shadow stack specific state is pushed onto the +shadow stack. Today this is only the old SSP (shadow stack pointer), pushed +in a special format with bit 63 set. On sigreturn this old SSP token is +verified and restored by the kernel. The kernel will also push the normal +restorer address to the shadow stack to help userspace avoid a shadow stack +violation on the sigreturn path that goes through the restorer. + +So the shadow stack signal frame format is as follows:: + + |1...old SSP| - Pointer to old pre-signal ssp in sigframe token format + (bit 63 set to 1) + | ...| - Other state may be added in the future + + + +Fork +---- + +The shadow stack's vma has VM_SHADOW_STACK flag set; its PTEs are required +to be read-only and dirty. When a shadow stack PTE is not RO and dirty, a +shadow access triggers a page fault with the shadow stack access bit set +in the page fault error code. + +When a task forks a child, its shadow stack PTEs are copied and both the +parent's and the child's shadow stack PTEs are cleared of the dirty bit. +Upon the next shadow stack access, the resulting shadow stack page fault +is handled by page copy/re-use. + +When a pthread child is created, the kernel allocates a new shadow stack +for the new thread. New shadow stack's behave like mmap() with respect to +ASLR behavior. + +Exec +---- + +On exec, shadow stack features are disabled by the kernel. At which point, +userspace can choose to re-enable, or lock them. diff --git a/Documentation/x86/index.rst b/Documentation/x86/index.rst index c73d133fd37c..9ac03055c4b5 100644 --- a/Documentation/x86/index.rst +++ b/Documentation/x86/index.rst @@ -22,6 +22,7 @@ x86-specific Documentation mtrr pat intel-hfi + cet iommu intel_txt amd-memory-encryption -- 2.17.1