Can_follow_write_pte() ensures a read-only page is COWed by checking the FOLL_COW flag, and uses pte_dirty() to validate the flag is still valid. Like a writable data page, a shadow stack page is writable, and becomes read-only during copy-on-write, but it is always dirty. Thus, in the can_follow_write_pte() check, it belongs to the writable page case and should be excluded from the read-only page pte_dirty() check. Apply the same changes to can_follow_write_pmd(). While at it, also split the long line into smaller ones. Signed-off-by: Yu-cheng Yu <yu-cheng.yu@xxxxxxxxx> Cc: Kees Cook <keescook@xxxxxxxxxxxx> Cc: Kirill A. Shutemov <kirill.shutemov@xxxxxxxxxxxxxxx> --- v25: - Split long line into smaller ones. v24: - Change arch_shadow_stack_mapping() to is_shadow_stack_mapping(). mm/gup.c | 16 ++++++++++++---- mm/huge_memory.c | 16 ++++++++++++---- 2 files changed, 24 insertions(+), 8 deletions(-) diff --git a/mm/gup.c b/mm/gup.c index ef7d2da9f03f..f2813cf4d07b 100644 --- a/mm/gup.c +++ b/mm/gup.c @@ -356,10 +356,18 @@ static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, * FOLL_FORCE can write to even unwritable pte's, but only * after we've gone through a COW cycle and they are dirty. */ -static inline bool can_follow_write_pte(pte_t pte, unsigned int flags) +static inline bool can_follow_write_pte(pte_t pte, unsigned int flags, + vm_flags_t vm_flags) { - return pte_write(pte) || - ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte)); + if (pte_write(pte)) + return true; + if ((flags & (FOLL_FORCE | FOLL_COW)) != (FOLL_FORCE | FOLL_COW)) + return false; + if (!pte_dirty(pte)) + return false; + if (is_shadow_stack_mapping(vm_flags)) + return false; + return true; } static struct page *follow_page_pte(struct vm_area_struct *vma, @@ -402,7 +410,7 @@ static struct page *follow_page_pte(struct vm_area_struct *vma, } if ((flags & FOLL_NUMA) && pte_protnone(pte)) goto no_page; - if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) { + if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags, vma->vm_flags)) { pte_unmap_unlock(ptep, ptl); return NULL; } diff --git a/mm/huge_memory.c b/mm/huge_memory.c index 044029ef45cd..a0858eac0320 100644 --- a/mm/huge_memory.c +++ b/mm/huge_memory.c @@ -1338,10 +1338,18 @@ vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd) * FOLL_FORCE can write to even unwritable pmd's, but only * after we've gone through a COW cycle and they are dirty. */ -static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags) +static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags, + vm_flags_t vm_flags) { - return pmd_write(pmd) || - ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd)); + if (pmd_write(pmd)) + return true; + if ((flags & (FOLL_FORCE | FOLL_COW)) != (FOLL_FORCE | FOLL_COW)) + return false; + if (!pmd_dirty(pmd)) + return false; + if (is_shadow_stack_mapping(vm_flags)) + return false; + return true; } struct page *follow_trans_huge_pmd(struct vm_area_struct *vma, @@ -1354,7 +1362,7 @@ struct page *follow_trans_huge_pmd(struct vm_area_struct *vma, assert_spin_locked(pmd_lockptr(mm, pmd)); - if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags)) + if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags, vma->vm_flags)) goto out; /* Avoid dumping huge zero page */ -- 2.21.0