[RFC v2 1/2] [NEEDS HELP] x86/mm: Handle unlazying membarrier core sync in the arch code

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



The core scheduler isn't a great place for
membarrier_mm_sync_core_before_usermode() -- the core scheduler doesn't
actually know whether we are lazy.  With the old code, if a CPU is
running a membarrier-registered task, goes idle, gets unlazied via a TLB
shootdown IPI, and switches back to the membarrier-registered task, it
will do an unnecessary core sync.

Conveniently, x86 is the only architecture that does anything in this
hook, so we can just move the code.

XXX: there are some comments in swich_mm_irqs_off() that seem to be
trying to document what barriers are expected, and it's not clear to me
that these barriers are actually present in all paths through the
code.  So I think this change makes the code more comprehensible and
has no effect on the code's correctness, but I'm not at all convinced
that the code is correct.

Signed-off-by: Andy Lutomirski <luto@xxxxxxxxxx>
---
 arch/x86/mm/tlb.c   | 17 ++++++++++++++++-
 kernel/sched/core.c | 14 +++++++-------
 2 files changed, 23 insertions(+), 8 deletions(-)

diff --git a/arch/x86/mm/tlb.c b/arch/x86/mm/tlb.c
index 3338a1feccf9..23df035b80e8 100644
--- a/arch/x86/mm/tlb.c
+++ b/arch/x86/mm/tlb.c
@@ -8,6 +8,7 @@
 #include <linux/export.h>
 #include <linux/cpu.h>
 #include <linux/debugfs.h>
+#include <linux/sched/mm.h>
 
 #include <asm/tlbflush.h>
 #include <asm/mmu_context.h>
@@ -496,6 +497,8 @@ void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
 		 * from one thread in a process to another thread in the same
 		 * process. No TLB flush required.
 		 */
+
+		// XXX: why is this okay wrt membarrier?
 		if (!was_lazy)
 			return;
 
@@ -508,12 +511,24 @@ void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
 		smp_mb();
 		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
 		if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
-				next_tlb_gen)
+		    next_tlb_gen) {
+			/*
+			 * We're reactivating an mm, and membarrier might
+			 * need to serialize.  Tell membarrier.
+			 */
+
+			// XXX: I can't understand the logic in
+			// membarrier_mm_sync_core_before_usermode().  What's
+			// the mm check for?
+			membarrier_mm_sync_core_before_usermode(next);
 			return;
+		}
 
 		/*
 		 * TLB contents went out of date while we were in lazy
 		 * mode. Fall through to the TLB switching code below.
+		 * No need for an explicit membarrier invocation -- the CR3
+		 * write will serialize.
 		 */
 		new_asid = prev_asid;
 		need_flush = true;
diff --git a/kernel/sched/core.c b/kernel/sched/core.c
index 2d95dc3f4644..6c4b76147166 100644
--- a/kernel/sched/core.c
+++ b/kernel/sched/core.c
@@ -3619,22 +3619,22 @@ static struct rq *finish_task_switch(struct task_struct *prev)
 	kcov_finish_switch(current);
 
 	fire_sched_in_preempt_notifiers(current);
+
 	/*
 	 * When switching through a kernel thread, the loop in
 	 * membarrier_{private,global}_expedited() may have observed that
 	 * kernel thread and not issued an IPI. It is therefore possible to
 	 * schedule between user->kernel->user threads without passing though
 	 * switch_mm(). Membarrier requires a barrier after storing to
-	 * rq->curr, before returning to userspace, so provide them here:
+	 * rq->curr, before returning to userspace, and mmdrop() provides
+	 * this barrier.
 	 *
-	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
-	 *   provided by mmdrop(),
-	 * - a sync_core for SYNC_CORE.
+	 * XXX: I don't think mmdrop() actually does this.  There's no
+	 * smp_mb__before/after_atomic() in there.
 	 */
-	if (mm) {
-		membarrier_mm_sync_core_before_usermode(mm);
+	if (mm)
 		mmdrop(mm);
-	}
+
 	if (unlikely(prev_state == TASK_DEAD)) {
 		if (prev->sched_class->task_dead)
 			prev->sched_class->task_dead(prev);
-- 
2.28.0




[Index of Archives]     [Linux Kernel]     [Kernel Newbies]     [x86 Platform Driver]     [Netdev]     [Linux Wireless]     [Netfilter]     [Bugtraq]     [Linux Filesystems]     [Yosemite Discussion]     [MIPS Linux]     [ARM Linux]     [Linux Security]     [Linux RAID]     [Samba]     [Device Mapper]

  Powered by Linux