On big systems, the mm refcount can become highly contented when doing a lot of context switching with threaded applications (particularly switching between the idle thread and an application thread). Abandoning lazy tlb slows switching down quite a bit in the important user->idle->user cases, so so instead implement a non-refcounted scheme that causes __mmdrop() to IPI all CPUs in the mm_cpumask and shoot down any remaining lazy ones. Shootdown IPIs are some concern, but they have not been observed to be a big problem with this scheme (the powerpc implementation generated 314 additional interrupts on a 144 CPU system during a kernel compile). There are a number of strategies that could be employed to reduce IPIs if they turn out to be a problem for some workload. Signed-off-by: Nicholas Piggin <npiggin@xxxxxxxxx> --- arch/Kconfig | 13 +++++++++++++ kernel/fork.c | 53 +++++++++++++++++++++++++++++++++++++++++++++++++++ 2 files changed, 66 insertions(+) diff --git a/arch/Kconfig b/arch/Kconfig index 596bf589d74b..540e43aeefa4 100644 --- a/arch/Kconfig +++ b/arch/Kconfig @@ -440,6 +440,19 @@ config MMU_LAZY_TLB config MMU_LAZY_TLB_REFCOUNT def_bool y depends on MMU_LAZY_TLB + depends on !MMU_LAZY_TLB_SHOOTDOWN + +config MMU_LAZY_TLB_SHOOTDOWN + bool + depends on MMU_LAZY_TLB + help + Instead of refcounting the "lazy tlb" mm struct, which can cause + contention with multi-threaded apps on large multiprocessor systems, + this option causes __mmdrop to IPI all CPUs in the mm_cpumask and + switch to init_mm if they were using the to-be-freed mm as the lazy + tlb. To implement this, architectures must use _lazy_tlb variants of + mm refcounting, and mm_cpumask must include at least all possible + CPUs in which mm might be lazy. config ARCH_HAVE_NMI_SAFE_CMPXCHG bool diff --git a/kernel/fork.c b/kernel/fork.c index 6d266388d380..e47312c2b48b 100644 --- a/kernel/fork.c +++ b/kernel/fork.c @@ -669,6 +669,54 @@ static void check_mm(struct mm_struct *mm) #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) +static void do_shoot_lazy_tlb(void *arg) +{ + struct mm_struct *mm = arg; + + if (current->active_mm == mm) { + WARN_ON_ONCE(current->mm); + current->active_mm = &init_mm; + switch_mm(mm, &init_mm, current); + exit_lazy_tlb(mm, current); + } +} + +static void do_check_lazy_tlb(void *arg) +{ + struct mm_struct *mm = arg; + + WARN_ON_ONCE(current->active_mm == mm); +} + +static void shoot_lazy_tlbs(struct mm_struct *mm) +{ + if (IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) { + /* + * IPI overheads have not found to be expensive, but they could + * be reduced in a number of possible ways, for example (in + * roughly increasing order of complexity): + * - A batch of mms requiring IPIs could be gathered and freed + * at once. + * - CPUs could store their active mm somewhere that can be + * remotely checked without a lock, to filter out + * false-positives in the cpumask. + * - After mm_users or mm_count reaches zero, switching away + * from the mm could clear mm_cpumask to reduce some IPIs + * (some batching or delaying would help). + * - A delayed freeing and RCU-like quiescing sequence based on + * mm switching to avoid IPIs completely. + */ + on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1); + if (IS_ENABLED(CONFIG_DEBUG_VM)) + on_each_cpu(do_check_lazy_tlb, (void *)mm, 1); + } else { + /* + * In this case, lazy tlb mms are refounted and would not reach + * __mmdrop until all CPUs have switched away and mmdrop()ed. + */ + } +} + /* * Called when the last reference to the mm * is dropped: either by a lazy thread or by @@ -678,7 +726,12 @@ void __mmdrop(struct mm_struct *mm) { BUG_ON(mm == &init_mm); WARN_ON_ONCE(mm == current->mm); + + /* Ensure no CPUs are using this as their lazy tlb mm */ + shoot_lazy_tlbs(mm); + WARN_ON_ONCE(mm == current->active_mm); + mm_free_pgd(mm); destroy_context(mm); mmu_notifier_subscriptions_destroy(mm); -- 2.23.0