Explain how CET works and the no_cet_shstk/no_cet_ibt kernel parameters. Signed-off-by: Yu-cheng Yu <yu-cheng.yu@xxxxxxxxx> --- .../admin-guide/kernel-parameters.txt | 6 + Documentation/x86/intel_cet.txt | 250 ++++++++++++++++++ 2 files changed, 256 insertions(+) create mode 100644 Documentation/x86/intel_cet.txt diff --git a/Documentation/admin-guide/kernel-parameters.txt b/Documentation/admin-guide/kernel-parameters.txt index efc7aa7a0670..dc787facdcde 100644 --- a/Documentation/admin-guide/kernel-parameters.txt +++ b/Documentation/admin-guide/kernel-parameters.txt @@ -2661,6 +2661,12 @@ noexec=on: enable non-executable mappings (default) noexec=off: disable non-executable mappings + no_cet_ibt [X86-64] Disable indirect branch tracking for user-mode + applications + + no_cet_shstk [X86-64] Disable shadow stack support for user-mode + applications + nosmap [X86] Disable SMAP (Supervisor Mode Access Prevention) even if it is supported by processor. diff --git a/Documentation/x86/intel_cet.txt b/Documentation/x86/intel_cet.txt new file mode 100644 index 000000000000..974bb8262146 --- /dev/null +++ b/Documentation/x86/intel_cet.txt @@ -0,0 +1,250 @@ +========================================= +Control Flow Enforcement Technology (CET) +========================================= + +[1] Overview +============ + +Control Flow Enforcement Technology (CET) provides protection against +return/jump-oriented programing (ROP) attacks. It can be implemented +to protect both the kernel and applications. In the first phase, +only the user-mode protection is implemented for the 64-bit kernel. +Thirty-two bit applications are supported under the compatibility +mode. + +CET includes shadow stack (SHSTK) and indirect branch tracking (IBT) +and they are enabled from two kernel configuration options: + + INTEL_X86_SHADOW_STACK_USER, and + INTEL_X86_BRANCH_TRACKING_USER. + +To build a CET-enabled kernel, Binutils v2.30 and GCC v8.1 or later +are required. To build a CET-enabled application, GLIBC v2.29 or +later is also requried. + +There are two command-line options for disabling CET features: + + no_cet_shstk - disables SHSTK, and + no_cet_ibt - disables IBT. + +At run time, /proc/cpuinfo shows the availability of SHSTK and IBT. + +[2] CET assembly instructions +============================= + +RDSSP %r + Read the SHSTK pointer into %r. + +INCSSP %r + Unwind (increment) the SHSTK pointer (0 ~ 255) steps as indicated + in the operand register. The GLIBC longjmp uses INCSSP to unwind + the SHSTK until that matches the program stack. When it is + necessary to unwind beyond 255 steps, longjmp divides and repeats + the process. + +RSTORSSP (%r) + Switch to the SHSTK indicated in the 'restore token' pointed by + the operand register and replace the 'restore token' with a new + token to be saved (with SAVEPREVSSP) for the outgoing SHSTK. + + Before RSTORSSP + + Incoming SHSTK Current/Outgoing SHSTK + + |----------------------| |----------------------| + addr=x | | ssp-> | | + |----------------------| |----------------------| + (%r)-> | rstor_token=(x|Lg) | addr=y-8 | | + |----------------------| |----------------------| + + After RSTORSSP + + |----------------------| |----------------------| + ssp-> | | | | + |----------------------| |----------------------| + | rstor_token=(y|Bz|Lg)| addr=y-8 | | + |----------------------| |----------------------| + + note: + 1. Only valid addresses and restore tokens can be on the + user-mode SHSTK. + 2. A token is always of type u64 and must align to u64. + 3. The incoming SHSTK pointer in a rstor_token must point to + immediately above the token. + 4. 'Lg' is bit[0] of a rstor_token indicating a 64-bit SHSTK. + 5. 'Bz' is bit[1] of a rstor_token indicating the token is to + be used only for the next SAVEPREVSSP and invalid for the + RSTORSSP. + +SAVEPREVSSP + Store the SHSTK 'restore token' pointed by + (current_SHSTK_pointer + 8). + + After SAVEPREVSSP + + |----------------------| |----------------------| + ssp-> | | | | + |----------------------| |----------------------| + | rstor_token=(y|Bz|Lg)| addr=y-8 | rstor_token(y|Lg) | + |----------------------| |----------------------| + +WRUSS %r0, (%r1) + Write the value in %r0 to the SHSTK address pointed by (%r1). + This is a kernel-mode only instruction. + +ENDBR + The compiler inserts an ENDBR at all valid branch targets. Any + CALL/JMP to a target without an ENDBR triggers a control + protection fault. + +[3] Application Enabling +======================== + +An application's CET capability is marked in its ELF header and can +be verified from the following command output, in the +NT_GNU_PROPERTY_TYPE_0 field: + + readelf -n <application> + +If an application supports CET and is statically linked, it will run +with CET protection. If the application needs any shared libraries, +the loader checks all dependencies and enables CET only when all +requirements are met. + +[4] Legacy Libraries +==================== + +GLIBC provides a few tunables for backward compatibility. + +GLIBC_TUNABLES=glibc.tune.hwcaps=-SHSTK,-IBT + Turn off SHSTK/IBT for the current shell. + +GLIBC_TUNABLES=glibc.tune.x86_shstk=<on, permissive> + This controls how dlopen() handles SHSTK legacy libraries: + on: continue with SHSTK enabled; + permissive: continue with SHSTK off. + +[5] CET system calls +==================== + +The following arch_prctl() system calls are added for CET: + +arch_prctl(ARCH_CET_STATUS, unsigned long *addr) + Return CET feature status. + + The parameter 'addr' is a pointer to a user buffer. + On returning to the caller, the kernel fills the following + information: + + *addr = SHSTK/IBT status + *(addr + 1) = SHSTK base address + *(addr + 2) = SHSTK size + +arch_prctl(ARCH_CET_DISABLE, unsigned long features) + Disable SHSTK and/or IBT specified in 'features'. Return -EPERM + if CET is locked out. + +arch_prctl(ARCH_CET_LOCK) + Lock out CET feature. + +arch_prctl(ARCH_CET_ALLOC_SHSTK, unsigned long *addr) + Allocate a new SHSTK. + + The parameter 'addr' is a pointer to a user buffer and indicates + the desired SHSTK size to allocate. On returning to the caller + the buffer contains the address of the new SHSTK. + +arch_prctl(ARCH_CET_LEGACY_BITMAP, unsigned long *addr) + Allocate an IBT legacy code bitmap if the current task does not + have one. + + The parameter 'addr' is a pointer to a user buffer. + On returning to the caller, the kernel fills the following + information: + + *addr = IBT bitmap base address + *(addr + 1) = IBT bitmap size + +[6] The implementation of the SHSTK +=================================== + +SHSTK size +---------- + +A task's SHSTK is allocated from memory to a fixed size that can +support 32 KB nested function calls; that is 256 KB for a 64-bit +application and 128 KB for a 32-bit application. The system admin +can change the default size. + +Signal +------ + +The main program and its signal handlers use the same SHSTK. Because +the SHSTK stores only return addresses, we can estimate a large +enough SHSTK to cover the condition that both the program stack and +the sigaltstack run out. + +The kernel creates a restore token at the SHSTK restoring address and +verifies that token when restoring from the signal handler. + +Fork +---- + +The SHSTK's vma has VM_SHSTK flag set; its PTEs are required to be +read-only and dirty. When a SHSTK PTE is not present, RO, and dirty, +a SHSTK access triggers a page fault with an additional SHSTK bit set +in the page fault error code. + +When a task forks a child, its SHSTK PTEs are copied and both the +parent's and the child's SHSTK PTEs are cleared of the dirty bit. +Upon the next SHSTK access, the resulting SHSTK page fault is handled +by page copy/re-use. + +When a pthread child is created, the kernel allocates a new SHSTK for +the new thread. + +Setjmp/Longjmp +-------------- + +Longjmp unwinds SHSTK until it matches the program stack. + +Ucontext +-------- + +In GLIBC, getcontext/setcontext is implemented in similar way as +setjmp/longjmp. + +When makecontext creates a new ucontext, a new SHSTK is allocated for +that context with ARCH_CET_ALLOC_SHSTK the syscall. The kernel +creates a restore token at the top of the new SHSTK and the user-mode +code switches to the new SHSTK with the RSTORSSP instruction. + +[7] The management of read-only & dirty PTEs for SHSTK +====================================================== + +A RO and dirty PTE exists in the following cases: + +(a) A page is modified and then shared with a fork()'ed child; +(b) A R/O page that has been COW'ed; +(c) A SHSTK page. + +The processor only checks the dirty bit for (c). To prevent the use +of non-SHSTK memory as SHSTK, we use a spare bit of the 64-bit PTE as +DIRTY_SW for (a) and (b) above. This results to the following PTE +settings: + +Modified PTE: (R/W + DIRTY_HW) +Modified and shared PTE: (R/O + DIRTY_SW) +R/O PTE, COW'ed: (R/O + DIRTY_SW) +SHSTK PTE: (R/O + DIRTY_HW) +SHSTK PTE, COW'ed: (R/O + DIRTY_HW) +SHSTK PTE, shared: (R/O + DIRTY_SW) + +Note that DIRTY_SW is only used in R/O PTEs but not R/W PTEs. + +[8] The implementation of IBT +============================= + +The kernel provides IBT support in mmap() of the legacy code bit map. +However, the management of the bitmap is done in the GLIBC or the +application. -- 2.17.1