Against: 2.6.32-rc5-mmotm-091101-1001 Rework the generic version of the numa_node_id() function to use the new generic percpu variable infrastructure. Guard the new implementation with a new config option: CONFIG_USE_PERCPU_NUMA_NODE_ID. Archs which support this new implemention will default this option to 'y' when NUMA is configured. This config option could be removed if/when all archs switch over to the generic percpu implementation of numa_node_id(). Arch support involves: 1) converting any existing per cpu variable implementations to use this implementation. x86_64 is an instance of such an arch. 2) archs that don't use a per cpu variable for numa_node_id() will need to initialize the new per cpu variable "numa_node" as cpus are brought on-line. ia64 is an example. Subsequent patches will convert x86_64 and ia64 to use this implemenation. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@xxxxxx> [Christoph's signoff here?] V0: # From cl@xxxxxxxxxxxxxxxxxxxx Wed Nov 4 10:36:12 2009 # Date: Wed, 4 Nov 2009 12:35:14 -0500 (EST) # From: Christoph Lameter <cl@xxxxxxxxxxxxxxxxxxxx> # To: Lee Schermerhorn <Lee.Schermerhorn@xxxxxx> # Subject: Re: [PATCH/RFC] slab: handle memoryless nodes efficiently # # I have a very early form of a draft of a patch here that genericizes # numa_node_id(). Uses the new generic this_cpu_xxx stuff. # # Not complete. V1: + split out x86 specific changes to subsequent patch + split out "numa_mem_id()" and related changes to separate patch + moved generic definitions of __this_cpu_xxx from linux/percpu.h to asm-generic/percpu.h where asm/percpu.h and other asm hdrs can use them. + export new percpu symbol 'numa_node' in mm/percpu.h + include <asm/percpu.h> in <linux/topology.h> for use by new numa_node_id(). V2: + add back the #ifndef/#endif guard around numa_node_id() so that archs can override generic definition + add generic stub for set_numa_node() + use generic percpu numa_node_id() only if enabled by CONFIG_USE_PERCPU_NUMA_NODE_ID to allow incremental per arch support. This option could be removed when/if all archs that support NUMA support this option. include/asm-generic/percpu.h | 456 ++++++++++++++++++++++++++++++++++++++++- include/asm-generic/topology.h | 3 include/linux/percpu.h | 454 ---------------------------------------- include/linux/topology.h | 32 ++ mm/percpu.c | 8 5 files changed, 493 insertions(+), 460 deletions(-) Index: linux-2.6.32-rc5-mmotm-091101-1001/include/linux/topology.h =================================================================== --- linux-2.6.32-rc5-mmotm-091101-1001.orig/include/linux/topology.h +++ linux-2.6.32-rc5-mmotm-091101-1001/include/linux/topology.h @@ -203,8 +203,35 @@ int arch_update_cpu_topology(void); #ifndef SD_NODE_INIT #error Please define an appropriate SD_NODE_INIT in include/asm/topology.h!!! #endif + #endif /* CONFIG_NUMA */ +#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID +DECLARE_PER_CPU(int, numa_node); + +#ifndef numa_node_id +/* Returns the number of the current Node. */ +#define numa_node_id() __this_cpu_read(numa_node) +#endif + +#ifndef cpu_to_node +#define cpu_to_node(__cpu) per_cpu(numa_node, (__cpu)) +#endif + +#ifndef set_numa_node +#define set_numa_node(__node) percpu_write(numa_node, __node) +#endif + +#else /* !CONFIG_USE_PERCPU_NUMA_NODE_ID */ + +/* Returns the number of the current Node. */ +#ifndef numa_node_id +#define numa_node_id() (cpu_to_node(raw_smp_processor_id())) + +#endif + +#endif /* [!]CONFIG_USE_PERCPU_NUMA_NODE_ID */ + #ifndef topology_physical_package_id #define topology_physical_package_id(cpu) ((void)(cpu), -1) #endif @@ -218,9 +245,4 @@ int arch_update_cpu_topology(void); #define topology_core_cpumask(cpu) cpumask_of(cpu) #endif -/* Returns the number of the current Node. */ -#ifndef numa_node_id -#define numa_node_id() (cpu_to_node(raw_smp_processor_id())) -#endif - #endif /* _LINUX_TOPOLOGY_H */ Index: linux-2.6.32-rc5-mmotm-091101-1001/mm/percpu.c =================================================================== --- linux-2.6.32-rc5-mmotm-091101-1001.orig/mm/percpu.c +++ linux-2.6.32-rc5-mmotm-091101-1001/mm/percpu.c @@ -2070,3 +2070,11 @@ void __init setup_per_cpu_areas(void) __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; } #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */ + +/* NUMA Setup */ + +#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID +DEFINE_PER_CPU(int, numa_node); +EXPORT_PER_CPU_SYMBOL(numa_node); +#endif + Index: linux-2.6.32-rc5-mmotm-091101-1001/include/asm-generic/topology.h =================================================================== --- linux-2.6.32-rc5-mmotm-091101-1001.orig/include/asm-generic/topology.h +++ linux-2.6.32-rc5-mmotm-091101-1001/include/asm-generic/topology.h @@ -34,6 +34,9 @@ #ifndef cpu_to_node #define cpu_to_node(cpu) ((void)(cpu),0) #endif +#ifndef cpu_to_mem +#define cpu_to_mem(cpu) ((void)(cpu),0) +#endif #ifndef parent_node #define parent_node(node) ((void)(node),0) #endif Index: linux-2.6.32-rc5-mmotm-091101-1001/include/asm-generic/percpu.h =================================================================== --- linux-2.6.32-rc5-mmotm-091101-1001.orig/include/asm-generic/percpu.h +++ linux-2.6.32-rc5-mmotm-091101-1001/include/asm-generic/percpu.h @@ -63,11 +63,465 @@ extern unsigned long __per_cpu_offset[NR #define this_cpu_ptr(ptr) SHIFT_PERCPU_PTR(ptr, my_cpu_offset) #define __this_cpu_ptr(ptr) SHIFT_PERCPU_PTR(ptr, __my_cpu_offset) - #ifdef CONFIG_HAVE_SETUP_PER_CPU_AREA extern void setup_per_cpu_areas(void); #endif +/* + * Optional methods for optimized non-lvalue per-cpu variable access. + * + * @var can be a percpu variable or a field of it and its size should + * equal char, int or long. percpu_read() evaluates to a lvalue and + * all others to void. + * + * These operations are guaranteed to be atomic w.r.t. preemption. + * The generic versions use plain get/put_cpu_var(). Archs are + * encouraged to implement single-instruction alternatives which don't + * require preemption protection. + */ +#ifndef percpu_read +# define percpu_read(var) \ + ({ \ + typeof(var) *pr_ptr__ = &(var); \ + typeof(var) pr_ret__; \ + pr_ret__ = get_cpu_var(*pr_ptr__); \ + put_cpu_var(*pr_ptr__); \ + pr_ret__; \ + }) +#endif + +#define __percpu_generic_to_op(var, val, op) \ +do { \ + typeof(var) *pgto_ptr__ = &(var); \ + get_cpu_var(*pgto_ptr__) op val; \ + put_cpu_var(*pgto_ptr__); \ +} while (0) + +#ifndef percpu_write +# define percpu_write(var, val) __percpu_generic_to_op(var, (val), =) +#endif + +#ifndef percpu_add +# define percpu_add(var, val) __percpu_generic_to_op(var, (val), +=) +#endif + +#ifndef percpu_sub +# define percpu_sub(var, val) __percpu_generic_to_op(var, (val), -=) +#endif + +#ifndef percpu_and +# define percpu_and(var, val) __percpu_generic_to_op(var, (val), &=) +#endif + +#ifndef percpu_or +# define percpu_or(var, val) __percpu_generic_to_op(var, (val), |=) +#endif + +#ifndef percpu_xor +# define percpu_xor(var, val) __percpu_generic_to_op(var, (val), ^=) +#endif + +/* + * Branching function to split up a function into a set of functions that + * are called for different scalar sizes of the objects handled. + */ + +extern void __bad_size_call_parameter(void); + +#define __pcpu_size_call_return(stem, variable) \ +({ typeof(variable) pscr_ret__; \ + __verify_pcpu_ptr(&(variable)); \ + switch(sizeof(variable)) { \ + case 1: pscr_ret__ = stem##1(variable);break; \ + case 2: pscr_ret__ = stem##2(variable);break; \ + case 4: pscr_ret__ = stem##4(variable);break; \ + case 8: pscr_ret__ = stem##8(variable);break; \ + default: \ + __bad_size_call_parameter();break; \ + } \ + pscr_ret__; \ +}) + +#define __pcpu_size_call(stem, variable, ...) \ +do { \ + __verify_pcpu_ptr(&(variable)); \ + switch(sizeof(variable)) { \ + case 1: stem##1(variable, __VA_ARGS__);break; \ + case 2: stem##2(variable, __VA_ARGS__);break; \ + case 4: stem##4(variable, __VA_ARGS__);break; \ + case 8: stem##8(variable, __VA_ARGS__);break; \ + default: \ + __bad_size_call_parameter();break; \ + } \ +} while (0) + +/* + * Optimized manipulation for memory allocated through the per cpu + * allocator or for addresses of per cpu variables. + * + * These operation guarantee exclusivity of access for other operations + * on the *same* processor. The assumption is that per cpu data is only + * accessed by a single processor instance (the current one). + * + * The first group is used for accesses that must be done in a + * preemption safe way since we know that the context is not preempt + * safe. Interrupts may occur. If the interrupt modifies the variable + * too then RMW actions will not be reliable. + * + * The arch code can provide optimized functions in two ways: + * + * 1. Override the function completely. F.e. define this_cpu_add(). + * The arch must then ensure that the various scalar format passed + * are handled correctly. + * + * 2. Provide functions for certain scalar sizes. F.e. provide + * this_cpu_add_2() to provide per cpu atomic operations for 2 byte + * sized RMW actions. If arch code does not provide operations for + * a scalar size then the fallback in the generic code will be + * used. + */ + +#define _this_cpu_generic_read(pcp) \ +({ typeof(pcp) ret__; \ + preempt_disable(); \ + ret__ = *this_cpu_ptr(&(pcp)); \ + preempt_enable(); \ + ret__; \ +}) + +#ifndef this_cpu_read +# ifndef this_cpu_read_1 +# define this_cpu_read_1(pcp) _this_cpu_generic_read(pcp) +# endif +# ifndef this_cpu_read_2 +# define this_cpu_read_2(pcp) _this_cpu_generic_read(pcp) +# endif +# ifndef this_cpu_read_4 +# define this_cpu_read_4(pcp) _this_cpu_generic_read(pcp) +# endif +# ifndef this_cpu_read_8 +# define this_cpu_read_8(pcp) _this_cpu_generic_read(pcp) +# endif +# define this_cpu_read(pcp) __pcpu_size_call_return(this_cpu_read_, (pcp)) +#endif + +#define _this_cpu_generic_to_op(pcp, val, op) \ +do { \ + preempt_disable(); \ + *__this_cpu_ptr(&(pcp)) op val; \ + preempt_enable(); \ +} while (0) + +#ifndef this_cpu_write +# ifndef this_cpu_write_1 +# define this_cpu_write_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) +# endif +# ifndef this_cpu_write_2 +# define this_cpu_write_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) +# endif +# ifndef this_cpu_write_4 +# define this_cpu_write_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) +# endif +# ifndef this_cpu_write_8 +# define this_cpu_write_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) +# endif +# define this_cpu_write(pcp, val) __pcpu_size_call(this_cpu_write_, (pcp), (val)) +#endif + +#ifndef this_cpu_add +# ifndef this_cpu_add_1 +# define this_cpu_add_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) +# endif +# ifndef this_cpu_add_2 +# define this_cpu_add_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) +# endif +# ifndef this_cpu_add_4 +# define this_cpu_add_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) +# endif +# ifndef this_cpu_add_8 +# define this_cpu_add_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) +# endif +# define this_cpu_add(pcp, val) __pcpu_size_call(this_cpu_add_, (pcp), (val)) +#endif + +#ifndef this_cpu_sub +# define this_cpu_sub(pcp, val) this_cpu_add((pcp), -(val)) +#endif + +#ifndef this_cpu_inc +# define this_cpu_inc(pcp) this_cpu_add((pcp), 1) +#endif + +#ifndef this_cpu_dec +# define this_cpu_dec(pcp) this_cpu_sub((pcp), 1) +#endif + +#ifndef this_cpu_and +# ifndef this_cpu_and_1 +# define this_cpu_and_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) +# endif +# ifndef this_cpu_and_2 +# define this_cpu_and_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) +# endif +# ifndef this_cpu_and_4 +# define this_cpu_and_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) +# endif +# ifndef this_cpu_and_8 +# define this_cpu_and_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) +# endif +# define this_cpu_and(pcp, val) __pcpu_size_call(this_cpu_and_, (pcp), (val)) +#endif + +#ifndef this_cpu_or +# ifndef this_cpu_or_1 +# define this_cpu_or_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) +# endif +# ifndef this_cpu_or_2 +# define this_cpu_or_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) +# endif +# ifndef this_cpu_or_4 +# define this_cpu_or_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) +# endif +# ifndef this_cpu_or_8 +# define this_cpu_or_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) +# endif +# define this_cpu_or(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val)) +#endif + +#ifndef this_cpu_xor +# ifndef this_cpu_xor_1 +# define this_cpu_xor_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) +# endif +# ifndef this_cpu_xor_2 +# define this_cpu_xor_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) +# endif +# ifndef this_cpu_xor_4 +# define this_cpu_xor_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) +# endif +# ifndef this_cpu_xor_8 +# define this_cpu_xor_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) +# endif +# define this_cpu_xor(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val)) +#endif + +/* + * Generic percpu operations that do not require preemption handling. + * Either we do not care about races or the caller has the + * responsibility of handling preemptions issues. Arch code can still + * override these instructions since the arch per cpu code may be more + * efficient and may actually get race freeness for free (that is the + * case for x86 for example). + * + * If there is no other protection through preempt disable and/or + * disabling interupts then one of these RMW operations can show unexpected + * behavior because the execution thread was rescheduled on another processor + * or an interrupt occurred and the same percpu variable was modified from + * the interrupt context. + */ +#ifndef __this_cpu_read +# ifndef __this_cpu_read_1 +# define __this_cpu_read_1(pcp) (*__this_cpu_ptr(&(pcp))) +# endif +# ifndef __this_cpu_read_2 +# define __this_cpu_read_2(pcp) (*__this_cpu_ptr(&(pcp))) +# endif +# ifndef __this_cpu_read_4 +# define __this_cpu_read_4(pcp) (*__this_cpu_ptr(&(pcp))) +# endif +# ifndef __this_cpu_read_8 +# define __this_cpu_read_8(pcp) (*__this_cpu_ptr(&(pcp))) +# endif +# define __this_cpu_read(pcp) __pcpu_size_call_return(__this_cpu_read_, (pcp)) +#endif + +#define __this_cpu_generic_to_op(pcp, val, op) \ +do { \ + *__this_cpu_ptr(&(pcp)) op val; \ +} while (0) + +#ifndef __this_cpu_write +# ifndef __this_cpu_write_1 +# define __this_cpu_write_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) +# endif +# ifndef __this_cpu_write_2 +# define __this_cpu_write_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) +# endif +# ifndef __this_cpu_write_4 +# define __this_cpu_write_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) +# endif +# ifndef __this_cpu_write_8 +# define __this_cpu_write_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) +# endif +# define __this_cpu_write(pcp, val) __pcpu_size_call(__this_cpu_write_, (pcp), (val)) +#endif + +#ifndef __this_cpu_add +# ifndef __this_cpu_add_1 +# define __this_cpu_add_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) +# endif +# ifndef __this_cpu_add_2 +# define __this_cpu_add_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) +# endif +# ifndef __this_cpu_add_4 +# define __this_cpu_add_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) +# endif +# ifndef __this_cpu_add_8 +# define __this_cpu_add_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) +# endif +# define __this_cpu_add(pcp, val) __pcpu_size_call(__this_cpu_add_, (pcp), (val)) +#endif + +#ifndef __this_cpu_sub +# define __this_cpu_sub(pcp, val) __this_cpu_add((pcp), -(val)) +#endif + +#ifndef __this_cpu_inc +# define __this_cpu_inc(pcp) __this_cpu_add((pcp), 1) +#endif + +#ifndef __this_cpu_dec +# define __this_cpu_dec(pcp) __this_cpu_sub((pcp), 1) +#endif + +#ifndef __this_cpu_and +# ifndef __this_cpu_and_1 +# define __this_cpu_and_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) +# endif +# ifndef __this_cpu_and_2 +# define __this_cpu_and_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) +# endif +# ifndef __this_cpu_and_4 +# define __this_cpu_and_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) +# endif +# ifndef __this_cpu_and_8 +# define __this_cpu_and_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) +# endif +# define __this_cpu_and(pcp, val) __pcpu_size_call(__this_cpu_and_, (pcp), (val)) +#endif + +#ifndef __this_cpu_or +# ifndef __this_cpu_or_1 +# define __this_cpu_or_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) +# endif +# ifndef __this_cpu_or_2 +# define __this_cpu_or_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) +# endif +# ifndef __this_cpu_or_4 +# define __this_cpu_or_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) +# endif +# ifndef __this_cpu_or_8 +# define __this_cpu_or_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) +# endif +# define __this_cpu_or(pcp, val) __pcpu_size_call(__this_cpu_or_, (pcp), (val)) +#endif + +#ifndef __this_cpu_xor +# ifndef __this_cpu_xor_1 +# define __this_cpu_xor_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) +# endif +# ifndef __this_cpu_xor_2 +# define __this_cpu_xor_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) +# endif +# ifndef __this_cpu_xor_4 +# define __this_cpu_xor_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) +# endif +# ifndef __this_cpu_xor_8 +# define __this_cpu_xor_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) +# endif +# define __this_cpu_xor(pcp, val) __pcpu_size_call(__this_cpu_xor_, (pcp), (val)) +#endif + +/* + * IRQ safe versions of the per cpu RMW operations. Note that these operations + * are *not* safe against modification of the same variable from another + * processors (which one gets when using regular atomic operations) + . They are guaranteed to be atomic vs. local interrupts and + * preemption only. + */ +#define irqsafe_cpu_generic_to_op(pcp, val, op) \ +do { \ + unsigned long flags; \ + local_irq_save(flags); \ + *__this_cpu_ptr(&(pcp)) op val; \ + local_irq_restore(flags); \ +} while (0) + +#ifndef irqsafe_cpu_add +# ifndef irqsafe_cpu_add_1 +# define irqsafe_cpu_add_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) +# endif +# ifndef irqsafe_cpu_add_2 +# define irqsafe_cpu_add_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) +# endif +# ifndef irqsafe_cpu_add_4 +# define irqsafe_cpu_add_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) +# endif +# ifndef irqsafe_cpu_add_8 +# define irqsafe_cpu_add_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) +# endif +# define irqsafe_cpu_add(pcp, val) __pcpu_size_call(irqsafe_cpu_add_, (pcp), (val)) +#endif + +#ifndef irqsafe_cpu_sub +# define irqsafe_cpu_sub(pcp, val) irqsafe_cpu_add((pcp), -(val)) +#endif + +#ifndef irqsafe_cpu_inc +# define irqsafe_cpu_inc(pcp) irqsafe_cpu_add((pcp), 1) +#endif + +#ifndef irqsafe_cpu_dec +# define irqsafe_cpu_dec(pcp) irqsafe_cpu_sub((pcp), 1) +#endif + +#ifndef irqsafe_cpu_and +# ifndef irqsafe_cpu_and_1 +# define irqsafe_cpu_and_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) +# endif +# ifndef irqsafe_cpu_and_2 +# define irqsafe_cpu_and_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) +# endif +# ifndef irqsafe_cpu_and_4 +# define irqsafe_cpu_and_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) +# endif +# ifndef irqsafe_cpu_and_8 +# define irqsafe_cpu_and_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) +# endif +# define irqsafe_cpu_and(pcp, val) __pcpu_size_call(irqsafe_cpu_and_, (val)) +#endif + +#ifndef irqsafe_cpu_or +# ifndef irqsafe_cpu_or_1 +# define irqsafe_cpu_or_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) +# endif +# ifndef irqsafe_cpu_or_2 +# define irqsafe_cpu_or_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) +# endif +# ifndef irqsafe_cpu_or_4 +# define irqsafe_cpu_or_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) +# endif +# ifndef irqsafe_cpu_or_8 +# define irqsafe_cpu_or_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) +# endif +# define irqsafe_cpu_or(pcp, val) __pcpu_size_call(irqsafe_cpu_or_, (val)) +#endif + +#ifndef irqsafe_cpu_xor +# ifndef irqsafe_cpu_xor_1 +# define irqsafe_cpu_xor_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) +# endif +# ifndef irqsafe_cpu_xor_2 +# define irqsafe_cpu_xor_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) +# endif +# ifndef irqsafe_cpu_xor_4 +# define irqsafe_cpu_xor_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) +# endif +# ifndef irqsafe_cpu_xor_8 +# define irqsafe_cpu_xor_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) +# endif +# define irqsafe_cpu_xor(pcp, val) __pcpu_size_call(irqsafe_cpu_xor_, (val)) +#endif + #else /* ! SMP */ #define per_cpu(var, cpu) (*((void)(cpu), &(var))) Index: linux-2.6.32-rc5-mmotm-091101-1001/include/linux/percpu.h =================================================================== --- linux-2.6.32-rc5-mmotm-091101-1001.orig/include/linux/percpu.h +++ linux-2.6.32-rc5-mmotm-091101-1001/include/linux/percpu.h @@ -174,459 +174,5 @@ static inline void *pcpu_lpage_remapped( #define alloc_percpu(type) \ (typeof(type) __percpu *)__alloc_percpu(sizeof(type), __alignof__(type)) -/* - * Optional methods for optimized non-lvalue per-cpu variable access. - * - * @var can be a percpu variable or a field of it and its size should - * equal char, int or long. percpu_read() evaluates to a lvalue and - * all others to void. - * - * These operations are guaranteed to be atomic w.r.t. preemption. - * The generic versions use plain get/put_cpu_var(). Archs are - * encouraged to implement single-instruction alternatives which don't - * require preemption protection. - */ -#ifndef percpu_read -# define percpu_read(var) \ - ({ \ - typeof(var) *pr_ptr__ = &(var); \ - typeof(var) pr_ret__; \ - pr_ret__ = get_cpu_var(*pr_ptr__); \ - put_cpu_var(*pr_ptr__); \ - pr_ret__; \ - }) -#endif - -#define __percpu_generic_to_op(var, val, op) \ -do { \ - typeof(var) *pgto_ptr__ = &(var); \ - get_cpu_var(*pgto_ptr__) op val; \ - put_cpu_var(*pgto_ptr__); \ -} while (0) - -#ifndef percpu_write -# define percpu_write(var, val) __percpu_generic_to_op(var, (val), =) -#endif - -#ifndef percpu_add -# define percpu_add(var, val) __percpu_generic_to_op(var, (val), +=) -#endif - -#ifndef percpu_sub -# define percpu_sub(var, val) __percpu_generic_to_op(var, (val), -=) -#endif - -#ifndef percpu_and -# define percpu_and(var, val) __percpu_generic_to_op(var, (val), &=) -#endif - -#ifndef percpu_or -# define percpu_or(var, val) __percpu_generic_to_op(var, (val), |=) -#endif - -#ifndef percpu_xor -# define percpu_xor(var, val) __percpu_generic_to_op(var, (val), ^=) -#endif - -/* - * Branching function to split up a function into a set of functions that - * are called for different scalar sizes of the objects handled. - */ - -extern void __bad_size_call_parameter(void); - -#define __pcpu_size_call_return(stem, variable) \ -({ typeof(variable) pscr_ret__; \ - __verify_pcpu_ptr(&(variable)); \ - switch(sizeof(variable)) { \ - case 1: pscr_ret__ = stem##1(variable);break; \ - case 2: pscr_ret__ = stem##2(variable);break; \ - case 4: pscr_ret__ = stem##4(variable);break; \ - case 8: pscr_ret__ = stem##8(variable);break; \ - default: \ - __bad_size_call_parameter();break; \ - } \ - pscr_ret__; \ -}) - -#define __pcpu_size_call(stem, variable, ...) \ -do { \ - __verify_pcpu_ptr(&(variable)); \ - switch(sizeof(variable)) { \ - case 1: stem##1(variable, __VA_ARGS__);break; \ - case 2: stem##2(variable, __VA_ARGS__);break; \ - case 4: stem##4(variable, __VA_ARGS__);break; \ - case 8: stem##8(variable, __VA_ARGS__);break; \ - default: \ - __bad_size_call_parameter();break; \ - } \ -} while (0) - -/* - * Optimized manipulation for memory allocated through the per cpu - * allocator or for addresses of per cpu variables. - * - * These operation guarantee exclusivity of access for other operations - * on the *same* processor. The assumption is that per cpu data is only - * accessed by a single processor instance (the current one). - * - * The first group is used for accesses that must be done in a - * preemption safe way since we know that the context is not preempt - * safe. Interrupts may occur. If the interrupt modifies the variable - * too then RMW actions will not be reliable. - * - * The arch code can provide optimized functions in two ways: - * - * 1. Override the function completely. F.e. define this_cpu_add(). - * The arch must then ensure that the various scalar format passed - * are handled correctly. - * - * 2. Provide functions for certain scalar sizes. F.e. provide - * this_cpu_add_2() to provide per cpu atomic operations for 2 byte - * sized RMW actions. If arch code does not provide operations for - * a scalar size then the fallback in the generic code will be - * used. - */ - -#define _this_cpu_generic_read(pcp) \ -({ typeof(pcp) ret__; \ - preempt_disable(); \ - ret__ = *this_cpu_ptr(&(pcp)); \ - preempt_enable(); \ - ret__; \ -}) - -#ifndef this_cpu_read -# ifndef this_cpu_read_1 -# define this_cpu_read_1(pcp) _this_cpu_generic_read(pcp) -# endif -# ifndef this_cpu_read_2 -# define this_cpu_read_2(pcp) _this_cpu_generic_read(pcp) -# endif -# ifndef this_cpu_read_4 -# define this_cpu_read_4(pcp) _this_cpu_generic_read(pcp) -# endif -# ifndef this_cpu_read_8 -# define this_cpu_read_8(pcp) _this_cpu_generic_read(pcp) -# endif -# define this_cpu_read(pcp) __pcpu_size_call_return(this_cpu_read_, (pcp)) -#endif - -#define _this_cpu_generic_to_op(pcp, val, op) \ -do { \ - preempt_disable(); \ - *__this_cpu_ptr(&(pcp)) op val; \ - preempt_enable(); \ -} while (0) - -#ifndef this_cpu_write -# ifndef this_cpu_write_1 -# define this_cpu_write_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) -# endif -# ifndef this_cpu_write_2 -# define this_cpu_write_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) -# endif -# ifndef this_cpu_write_4 -# define this_cpu_write_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) -# endif -# ifndef this_cpu_write_8 -# define this_cpu_write_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) -# endif -# define this_cpu_write(pcp, val) __pcpu_size_call(this_cpu_write_, (pcp), (val)) -#endif - -#ifndef this_cpu_add -# ifndef this_cpu_add_1 -# define this_cpu_add_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) -# endif -# ifndef this_cpu_add_2 -# define this_cpu_add_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) -# endif -# ifndef this_cpu_add_4 -# define this_cpu_add_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) -# endif -# ifndef this_cpu_add_8 -# define this_cpu_add_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) -# endif -# define this_cpu_add(pcp, val) __pcpu_size_call(this_cpu_add_, (pcp), (val)) -#endif - -#ifndef this_cpu_sub -# define this_cpu_sub(pcp, val) this_cpu_add((pcp), -(val)) -#endif - -#ifndef this_cpu_inc -# define this_cpu_inc(pcp) this_cpu_add((pcp), 1) -#endif - -#ifndef this_cpu_dec -# define this_cpu_dec(pcp) this_cpu_sub((pcp), 1) -#endif - -#ifndef this_cpu_and -# ifndef this_cpu_and_1 -# define this_cpu_and_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) -# endif -# ifndef this_cpu_and_2 -# define this_cpu_and_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) -# endif -# ifndef this_cpu_and_4 -# define this_cpu_and_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) -# endif -# ifndef this_cpu_and_8 -# define this_cpu_and_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) -# endif -# define this_cpu_and(pcp, val) __pcpu_size_call(this_cpu_and_, (pcp), (val)) -#endif - -#ifndef this_cpu_or -# ifndef this_cpu_or_1 -# define this_cpu_or_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) -# endif -# ifndef this_cpu_or_2 -# define this_cpu_or_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) -# endif -# ifndef this_cpu_or_4 -# define this_cpu_or_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) -# endif -# ifndef this_cpu_or_8 -# define this_cpu_or_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) -# endif -# define this_cpu_or(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val)) -#endif - -#ifndef this_cpu_xor -# ifndef this_cpu_xor_1 -# define this_cpu_xor_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) -# endif -# ifndef this_cpu_xor_2 -# define this_cpu_xor_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) -# endif -# ifndef this_cpu_xor_4 -# define this_cpu_xor_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) -# endif -# ifndef this_cpu_xor_8 -# define this_cpu_xor_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) -# endif -# define this_cpu_xor(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val)) -#endif - -/* - * Generic percpu operations that do not require preemption handling. - * Either we do not care about races or the caller has the - * responsibility of handling preemptions issues. Arch code can still - * override these instructions since the arch per cpu code may be more - * efficient and may actually get race freeness for free (that is the - * case for x86 for example). - * - * If there is no other protection through preempt disable and/or - * disabling interupts then one of these RMW operations can show unexpected - * behavior because the execution thread was rescheduled on another processor - * or an interrupt occurred and the same percpu variable was modified from - * the interrupt context. - */ -#ifndef __this_cpu_read -# ifndef __this_cpu_read_1 -# define __this_cpu_read_1(pcp) (*__this_cpu_ptr(&(pcp))) -# endif -# ifndef __this_cpu_read_2 -# define __this_cpu_read_2(pcp) (*__this_cpu_ptr(&(pcp))) -# endif -# ifndef __this_cpu_read_4 -# define __this_cpu_read_4(pcp) (*__this_cpu_ptr(&(pcp))) -# endif -# ifndef __this_cpu_read_8 -# define __this_cpu_read_8(pcp) (*__this_cpu_ptr(&(pcp))) -# endif -# define __this_cpu_read(pcp) __pcpu_size_call_return(__this_cpu_read_, (pcp)) -#endif - -#define __this_cpu_generic_to_op(pcp, val, op) \ -do { \ - *__this_cpu_ptr(&(pcp)) op val; \ -} while (0) - -#ifndef __this_cpu_write -# ifndef __this_cpu_write_1 -# define __this_cpu_write_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) -# endif -# ifndef __this_cpu_write_2 -# define __this_cpu_write_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) -# endif -# ifndef __this_cpu_write_4 -# define __this_cpu_write_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) -# endif -# ifndef __this_cpu_write_8 -# define __this_cpu_write_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) -# endif -# define __this_cpu_write(pcp, val) __pcpu_size_call(__this_cpu_write_, (pcp), (val)) -#endif - -#ifndef __this_cpu_add -# ifndef __this_cpu_add_1 -# define __this_cpu_add_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) -# endif -# ifndef __this_cpu_add_2 -# define __this_cpu_add_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) -# endif -# ifndef __this_cpu_add_4 -# define __this_cpu_add_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) -# endif -# ifndef __this_cpu_add_8 -# define __this_cpu_add_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) -# endif -# define __this_cpu_add(pcp, val) __pcpu_size_call(__this_cpu_add_, (pcp), (val)) -#endif - -#ifndef __this_cpu_sub -# define __this_cpu_sub(pcp, val) __this_cpu_add((pcp), -(val)) -#endif - -#ifndef __this_cpu_inc -# define __this_cpu_inc(pcp) __this_cpu_add((pcp), 1) -#endif - -#ifndef __this_cpu_dec -# define __this_cpu_dec(pcp) __this_cpu_sub((pcp), 1) -#endif - -#ifndef __this_cpu_and -# ifndef __this_cpu_and_1 -# define __this_cpu_and_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) -# endif -# ifndef __this_cpu_and_2 -# define __this_cpu_and_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) -# endif -# ifndef __this_cpu_and_4 -# define __this_cpu_and_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) -# endif -# ifndef __this_cpu_and_8 -# define __this_cpu_and_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) -# endif -# define __this_cpu_and(pcp, val) __pcpu_size_call(__this_cpu_and_, (pcp), (val)) -#endif - -#ifndef __this_cpu_or -# ifndef __this_cpu_or_1 -# define __this_cpu_or_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) -# endif -# ifndef __this_cpu_or_2 -# define __this_cpu_or_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) -# endif -# ifndef __this_cpu_or_4 -# define __this_cpu_or_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) -# endif -# ifndef __this_cpu_or_8 -# define __this_cpu_or_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) -# endif -# define __this_cpu_or(pcp, val) __pcpu_size_call(__this_cpu_or_, (pcp), (val)) -#endif - -#ifndef __this_cpu_xor -# ifndef __this_cpu_xor_1 -# define __this_cpu_xor_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) -# endif -# ifndef __this_cpu_xor_2 -# define __this_cpu_xor_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) -# endif -# ifndef __this_cpu_xor_4 -# define __this_cpu_xor_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) -# endif -# ifndef __this_cpu_xor_8 -# define __this_cpu_xor_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) -# endif -# define __this_cpu_xor(pcp, val) __pcpu_size_call(__this_cpu_xor_, (pcp), (val)) -#endif - -/* - * IRQ safe versions of the per cpu RMW operations. Note that these operations - * are *not* safe against modification of the same variable from another - * processors (which one gets when using regular atomic operations) - . They are guaranteed to be atomic vs. local interrupts and - * preemption only. - */ -#define irqsafe_cpu_generic_to_op(pcp, val, op) \ -do { \ - unsigned long flags; \ - local_irq_save(flags); \ - *__this_cpu_ptr(&(pcp)) op val; \ - local_irq_restore(flags); \ -} while (0) - -#ifndef irqsafe_cpu_add -# ifndef irqsafe_cpu_add_1 -# define irqsafe_cpu_add_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) -# endif -# ifndef irqsafe_cpu_add_2 -# define irqsafe_cpu_add_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) -# endif -# ifndef irqsafe_cpu_add_4 -# define irqsafe_cpu_add_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) -# endif -# ifndef irqsafe_cpu_add_8 -# define irqsafe_cpu_add_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=) -# endif -# define irqsafe_cpu_add(pcp, val) __pcpu_size_call(irqsafe_cpu_add_, (pcp), (val)) -#endif - -#ifndef irqsafe_cpu_sub -# define irqsafe_cpu_sub(pcp, val) irqsafe_cpu_add((pcp), -(val)) -#endif - -#ifndef irqsafe_cpu_inc -# define irqsafe_cpu_inc(pcp) irqsafe_cpu_add((pcp), 1) -#endif - -#ifndef irqsafe_cpu_dec -# define irqsafe_cpu_dec(pcp) irqsafe_cpu_sub((pcp), 1) -#endif - -#ifndef irqsafe_cpu_and -# ifndef irqsafe_cpu_and_1 -# define irqsafe_cpu_and_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) -# endif -# ifndef irqsafe_cpu_and_2 -# define irqsafe_cpu_and_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) -# endif -# ifndef irqsafe_cpu_and_4 -# define irqsafe_cpu_and_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) -# endif -# ifndef irqsafe_cpu_and_8 -# define irqsafe_cpu_and_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=) -# endif -# define irqsafe_cpu_and(pcp, val) __pcpu_size_call(irqsafe_cpu_and_, (val)) -#endif - -#ifndef irqsafe_cpu_or -# ifndef irqsafe_cpu_or_1 -# define irqsafe_cpu_or_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) -# endif -# ifndef irqsafe_cpu_or_2 -# define irqsafe_cpu_or_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) -# endif -# ifndef irqsafe_cpu_or_4 -# define irqsafe_cpu_or_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) -# endif -# ifndef irqsafe_cpu_or_8 -# define irqsafe_cpu_or_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=) -# endif -# define irqsafe_cpu_or(pcp, val) __pcpu_size_call(irqsafe_cpu_or_, (val)) -#endif - -#ifndef irqsafe_cpu_xor -# ifndef irqsafe_cpu_xor_1 -# define irqsafe_cpu_xor_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) -# endif -# ifndef irqsafe_cpu_xor_2 -# define irqsafe_cpu_xor_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) -# endif -# ifndef irqsafe_cpu_xor_4 -# define irqsafe_cpu_xor_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) -# endif -# ifndef irqsafe_cpu_xor_8 -# define irqsafe_cpu_xor_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=) -# endif -# define irqsafe_cpu_xor(pcp, val) __pcpu_size_call(irqsafe_cpu_xor_, (val)) -#endif #endif /* __LINUX_PERCPU_H */ -- To unsubscribe from this list: send the line "unsubscribe linux-arch" in the body of a message to majordomo@xxxxxxxxxxxxxxx More majordomo info at http://vger.kernel.org/majordomo-info.html