Utilization clamping allows to clamp the CPU's utilization within a [util_min, util_max] range, depending on the set of RUNNABLE tasks on that CPU. Each task references two "clamp buckets" defining its minimum and maximum (util_{min,max}) utilization "clamp values". A CPU's clamp bucket is active if there is at least one RUNNABLE tasks enqueued on that CPU and refcounting that bucket. When a task is {en,de}queued {on,from} a rq, the set of active clamp buckets on that CPU can change. Since each clamp bucket enforces a different utilization clamp value, when the set of active clamp buckets changes, a new "aggregated" clamp value is computed for that CPU. Clamp values are always MAX aggregated for both util_min and util_max. This ensures that no tasks can affect the performance of other co-scheduled tasks which are more boosted (i.e. with higher util_min clamp) or less capped (i.e. with higher util_max clamp). Each task has a: task_struct::uclamp[clamp_id]::bucket_id to track the "bucket index" of the CPU's clamp bucket it refcounts while enqueued, for each clamp index (clamp_id). Each CPU's rq has a: rq::uclamp[clamp_id]::bucket[bucket_id].tasks to track how many tasks, currently RUNNABLE on that CPU, refcount each clamp bucket (bucket_id) of a clamp index (clamp_id). Each CPU's rq has also a: rq::uclamp[clamp_id]::bucket[bucket_id].value to track the clamp value of each clamp bucket (bucket_id) of a clamp index (clamp_id). The rq::uclamp::bucket[clamp_id][] array is scanned every time we need to find a new MAX aggregated clamp value for a clamp_id. This operation is required only when we dequeue the last task of a clamp bucket tracking the current MAX aggregated clamp value. In these cases, the CPU is either entering IDLE or going to schedule a less boosted or more clamped task. The expected number of different clamp values, configured at build time, is small enough to fit the full unordered array into a single cache line. Add the basic data structures required to refcount, in each CPU's rq, the number of RUNNABLE tasks for each clamp bucket. Add also the max aggregation required to update the rq's clamp value at each enqueue/dequeue event. Use a simple linear mapping of clamp values into clamp buckets. Pre-compute and cache bucket_id to avoid integer divisions at enqueue/dequeue time. Signed-off-by: Patrick Bellasi <patrick.bellasi@xxxxxxx> Cc: Ingo Molnar <mingo@xxxxxxxxxx> Cc: Peter Zijlstra <peterz@xxxxxxxxxxxxx> --- Changes in v7: Message-ID: <20190123191007.GG17749@xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx> - removed buckets mapping code - use a simpler linear mapping of clamp values into buckets Message-ID: <20190124161443.lv2pw5fsspyelckq@e110439-lin> - move this patch at the beginning of the series, in the attempt to make the overall series easier to digest by moving at the very beginning the core bits and main data structures Others: - update the mapping logic to use exactly and only UCLAMP_BUCKETS_COUNT buckets, i.e. no more "special" bucket - update uclamp_rq_update() to do top-bottom max search --- include/linux/log2.h | 37 ++++++++ include/linux/sched.h | 39 ++++++++ include/linux/sched/topology.h | 6 -- init/Kconfig | 53 +++++++++++ kernel/sched/core.c | 165 +++++++++++++++++++++++++++++++++ kernel/sched/sched.h | 59 +++++++++++- 6 files changed, 350 insertions(+), 9 deletions(-) diff --git a/include/linux/log2.h b/include/linux/log2.h index 2af7f77866d0..e2db25734532 100644 --- a/include/linux/log2.h +++ b/include/linux/log2.h @@ -224,4 +224,41 @@ int __order_base_2(unsigned long n) ilog2((n) - 1) + 1) : \ __order_base_2(n) \ ) + +static inline __attribute__((const)) +int __bits_per(unsigned long n) +{ + if (n < 2) + return 1; + if (is_power_of_2(n)) + return order_base_2(n) + 1; + return order_base_2(n); +} + +/** + * bits_per - calculate the number of bits required for the argument + * @n: parameter + * + * This is constant-capable and can be used for compile time + * initiaizations, e.g bitfields. + * + * The first few values calculated by this routine: + * bf(0) = 1 + * bf(1) = 1 + * bf(2) = 2 + * bf(3) = 2 + * bf(4) = 3 + * ... and so on. + */ +#define bits_per(n) \ +( \ + __builtin_constant_p(n) ? ( \ + ((n) == 0 || (n) == 1) ? 1 : ( \ + ((n) & (n - 1)) == 0 ? \ + ilog2((n) - 1) + 2 : \ + ilog2((n) - 1) + 1 \ + ) \ + ) : \ + __bits_per(n) \ +) #endif /* _LINUX_LOG2_H */ diff --git a/include/linux/sched.h b/include/linux/sched.h index 4112639c2a85..45460e7a3eee 100644 --- a/include/linux/sched.h +++ b/include/linux/sched.h @@ -281,6 +281,18 @@ struct vtime { u64 gtime; }; +/* + * Utilization clamp constraints. + * @UCLAMP_MIN: Minimum utilization + * @UCLAMP_MAX: Maximum utilization + * @UCLAMP_CNT: Utilization clamp constraints count + */ +enum uclamp_id { + UCLAMP_MIN = 0, + UCLAMP_MAX, + UCLAMP_CNT +}; + struct sched_info { #ifdef CONFIG_SCHED_INFO /* Cumulative counters: */ @@ -312,6 +324,10 @@ struct sched_info { # define SCHED_FIXEDPOINT_SHIFT 10 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT) +/* Increase resolution of cpu_capacity calculations */ +# define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT +# define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT) + struct load_weight { unsigned long weight; u32 inv_weight; @@ -560,6 +576,25 @@ struct sched_dl_entity { struct hrtimer inactive_timer; }; +#ifdef CONFIG_UCLAMP_TASK +/* Number of utilization clamp buckets (shorter alias) */ +#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT + +/* + * Utilization clamp for a scheduling entity + * @value: clamp value "requested" by a se + * @bucket_id: clamp bucket corresponding to the "requested" value + * + * The bucket_id is the index of the clamp bucket matching the clamp value + * which is pre-computed and stored to avoid expensive integer divisions from + * the fast path. + */ +struct uclamp_se { + unsigned int value : bits_per(SCHED_CAPACITY_SCALE); + unsigned int bucket_id : bits_per(UCLAMP_BUCKETS); +}; +#endif /* CONFIG_UCLAMP_TASK */ + union rcu_special { struct { u8 blocked; @@ -640,6 +675,10 @@ struct task_struct { #endif struct sched_dl_entity dl; +#ifdef CONFIG_UCLAMP_TASK + struct uclamp_se uclamp[UCLAMP_CNT]; +#endif + #ifdef CONFIG_PREEMPT_NOTIFIERS /* List of struct preempt_notifier: */ struct hlist_head preempt_notifiers; diff --git a/include/linux/sched/topology.h b/include/linux/sched/topology.h index c31d3a47a47c..04beadac6985 100644 --- a/include/linux/sched/topology.h +++ b/include/linux/sched/topology.h @@ -6,12 +6,6 @@ #include <linux/sched/idle.h> -/* - * Increase resolution of cpu_capacity calculations - */ -#define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT -#define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT) - /* * sched-domains (multiprocessor balancing) declarations: */ diff --git a/init/Kconfig b/init/Kconfig index 513fa544a134..34e23d5d95d1 100644 --- a/init/Kconfig +++ b/init/Kconfig @@ -640,6 +640,59 @@ config HAVE_UNSTABLE_SCHED_CLOCK config GENERIC_SCHED_CLOCK bool +menu "Scheduler features" + +config UCLAMP_TASK + bool "Enable utilization clamping for RT/FAIR tasks" + depends on CPU_FREQ_GOV_SCHEDUTIL + help + This feature enables the scheduler to track the clamped utilization + of each CPU based on RUNNABLE tasks scheduled on that CPU. + + With this option, the user can specify the min and max CPU + utilization allowed for RUNNABLE tasks. The max utilization defines + the maximum frequency a task should use while the min utilization + defines the minimum frequency it should use. + + Both min and max utilization clamp values are hints to the scheduler, + aiming at improving its frequency selection policy, but they do not + enforce or grant any specific bandwidth for tasks. + + If in doubt, say N. + +config UCLAMP_BUCKETS_COUNT + int "Number of supported utilization clamp buckets" + range 5 20 + default 5 + depends on UCLAMP_TASK + help + Defines the number of clamp buckets to use. The range of each bucket + will be SCHED_CAPACITY_SCALE/UCLAMP_BUCKETS_COUNT. The higher the + number of clamp buckets the finer their granularity and the higher + the precision of clamping aggregation and tracking at run-time. + + For example, with the default configuration we will have 5 clamp + buckets tracking 20% utilization each. A 25% boosted tasks will be + refcounted in the [20..39]% bucket and will set the bucket clamp + effective value to 25%. + If a second 30% boosted task should be co-scheduled on the same CPU, + that task will be refcounted in the same bucket of the first task and + it will boost the bucket clamp effective value to 30%. + The clamp effective value of a bucket is reset to its nominal value + (20% in the example above) when there are anymore tasks refcounted in + that bucket. + + An additional boost/capping margin can be added to some tasks. In the + example above the 25% task will be boosted to 30% until it exits the + CPU. If that should be considered not acceptable on certain systems, + it's always possible to reduce the margin by increasing the number of + clamp buckets to trade off used memory for run-time tracking + precision. + + If in doubt, use the default value. + +endmenu + # # For architectures that want to enable the support for NUMA-affine scheduler # balancing logic: diff --git a/kernel/sched/core.c b/kernel/sched/core.c index ec1b67a195cc..8ecf5470058c 100644 --- a/kernel/sched/core.c +++ b/kernel/sched/core.c @@ -719,6 +719,167 @@ static void set_load_weight(struct task_struct *p, bool update_load) } } +#ifdef CONFIG_UCLAMP_TASK + +/* Integer ceil-rounded range for each bucket */ +#define UCLAMP_BUCKET_DELTA ((SCHED_CAPACITY_SCALE / UCLAMP_BUCKETS) + 1) + +static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) +{ + return clamp_value / UCLAMP_BUCKET_DELTA; +} + +static inline unsigned int uclamp_bucket_value(unsigned int clamp_value) +{ + return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value); +} + +static inline unsigned int uclamp_none(int clamp_id) +{ + if (clamp_id == UCLAMP_MIN) + return 0; + return SCHED_CAPACITY_SCALE; +} + +static inline void uclamp_rq_update(struct rq *rq, unsigned int clamp_id) +{ + struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; + unsigned int max_value = uclamp_none(clamp_id); + unsigned int bucket_id; + + /* + * Both min and max clamps are MAX aggregated, thus the topmost + * bucket with some tasks defines the rq's clamp value. + */ + bucket_id = UCLAMP_BUCKETS; + do { + --bucket_id; + if (!rq->uclamp[clamp_id].bucket[bucket_id].tasks) + continue; + max_value = bucket[bucket_id].value; + break; + } while (bucket_id); + + WRITE_ONCE(rq->uclamp[clamp_id].value, max_value); +} + +/* + * When a task is enqueued on a rq, the clamp bucket currently defined by the + * task's uclamp::bucket_id is reference counted on that rq. This also + * immediately updates the rq's clamp value if required. + * + * Since tasks know their specific value requested from user-space, we track + * within each bucket the maximum value for tasks refcounted in that bucket. + * This provide a further aggregation (local clamping) which allows to track + * within each bucket the exact "requested" clamp value whenever all tasks + * RUNNABLE in that bucket require the same clamp. + */ +static inline void uclamp_rq_inc_id(struct task_struct *p, struct rq *rq, + unsigned int clamp_id) +{ + unsigned int bucket_id = p->uclamp[clamp_id].bucket_id; + unsigned int rq_clamp, bkt_clamp, tsk_clamp; + + rq->uclamp[clamp_id].bucket[bucket_id].tasks++; + + /* + * Local clamping: rq's buckets always track the max "requested" + * clamp value from all RUNNABLE tasks in that bucket. + */ + tsk_clamp = p->uclamp[clamp_id].value; + bkt_clamp = rq->uclamp[clamp_id].bucket[bucket_id].value; + rq->uclamp[clamp_id].bucket[bucket_id].value = max(bkt_clamp, tsk_clamp); + + rq_clamp = READ_ONCE(rq->uclamp[clamp_id].value); + WRITE_ONCE(rq->uclamp[clamp_id].value, max(rq_clamp, tsk_clamp)); +} + +/* + * When a task is dequeued from a rq, the clamp bucket reference counted by + * the task is released. If this is the last task reference counting the rq's + * max active clamp value, then the rq's clamp value is updated. + * Both the tasks reference counter and the rq's cached clamp values are + * expected to be always valid, if we detect they are not we skip the updates, + * enforce a consistent state and warn. + */ +static inline void uclamp_rq_dec_id(struct task_struct *p, struct rq *rq, + unsigned int clamp_id) +{ + unsigned int bucket_id = p->uclamp[clamp_id].bucket_id; + unsigned int rq_clamp, bkt_clamp; + + SCHED_WARN_ON(!rq->uclamp[clamp_id].bucket[bucket_id].tasks); + if (likely(rq->uclamp[clamp_id].bucket[bucket_id].tasks)) + rq->uclamp[clamp_id].bucket[bucket_id].tasks--; + + /* + * Keep "local clamping" simple and accept to (possibly) overboost + * still RUNNABLE tasks in the same bucket. + */ + if (likely(rq->uclamp[clamp_id].bucket[bucket_id].tasks)) + return; + bkt_clamp = rq->uclamp[clamp_id].bucket[bucket_id].value; + + /* The rq's clamp value is expected to always track the max */ + rq_clamp = READ_ONCE(rq->uclamp[clamp_id].value); + SCHED_WARN_ON(bkt_clamp > rq_clamp); + if (bkt_clamp >= rq_clamp) { + /* + * Reset rq's clamp bucket value to its nominal value whenever + * there are anymore RUNNABLE tasks refcounting it. + */ + rq->uclamp[clamp_id].bucket[bucket_id].value = + uclamp_bucket_value(rq_clamp); + uclamp_rq_update(rq, clamp_id); + } +} + +static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) +{ + unsigned int clamp_id; + + if (unlikely(!p->sched_class->uclamp_enabled)) + return; + + for (clamp_id = 0; clamp_id < UCLAMP_CNT; ++clamp_id) + uclamp_rq_inc_id(p, rq, clamp_id); +} + +static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) +{ + unsigned int clamp_id; + + if (unlikely(!p->sched_class->uclamp_enabled)) + return; + + for (clamp_id = 0; clamp_id < UCLAMP_CNT; ++clamp_id) + uclamp_rq_dec_id(p, rq, clamp_id); +} + +static void __init init_uclamp(void) +{ + unsigned int clamp_id; + int cpu; + + for_each_possible_cpu(cpu) + memset(&cpu_rq(cpu)->uclamp, 0, sizeof(struct uclamp_rq)); + + for (clamp_id = 0; clamp_id < UCLAMP_CNT; ++clamp_id) { + unsigned int clamp_value = uclamp_none(clamp_id); + unsigned int bucket_id = uclamp_bucket_id(clamp_value); + struct uclamp_se *uc_se = &init_task.uclamp[clamp_id]; + + uc_se->bucket_id = bucket_id; + uc_se->value = clamp_value; + } +} + +#else /* CONFIG_UCLAMP_TASK */ +static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } +static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } +static inline void init_uclamp(void) { } +#endif /* CONFIG_UCLAMP_TASK */ + static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) { if (!(flags & ENQUEUE_NOCLOCK)) @@ -729,6 +890,7 @@ static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) psi_enqueue(p, flags & ENQUEUE_WAKEUP); } + uclamp_rq_inc(rq, p); p->sched_class->enqueue_task(rq, p, flags); } @@ -742,6 +904,7 @@ static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) psi_dequeue(p, flags & DEQUEUE_SLEEP); } + uclamp_rq_dec(rq, p); p->sched_class->dequeue_task(rq, p, flags); } @@ -6075,6 +6238,8 @@ void __init sched_init(void) psi_init(); + init_uclamp(); + scheduler_running = 1; } diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h index c688ef5012e5..ea9e28723946 100644 --- a/kernel/sched/sched.h +++ b/kernel/sched/sched.h @@ -797,6 +797,48 @@ extern void rto_push_irq_work_func(struct irq_work *work); #endif #endif /* CONFIG_SMP */ +#ifdef CONFIG_UCLAMP_TASK +/* + * struct uclamp_bucket - Utilization clamp bucket + * @value: utilization clamp value for tasks on this clamp bucket + * @tasks: number of RUNNABLE tasks on this clamp bucket + * + * Keep track of how many tasks are RUNNABLE for a given utilization + * clamp value. + */ +struct uclamp_bucket { + unsigned long value : bits_per(SCHED_CAPACITY_SCALE); + unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE); +}; + +/* + * struct uclamp_rq - rq's utilization clamp + * @value: currently active clamp values for a rq + * @bucket: utilization clamp buckets affecting a rq + * + * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values. + * A clamp value is affecting a rq when there is at least one task RUNNABLE + * (or actually running) with that value. + * + * We have up to UCLAMP_CNT possible different clamp values, which are + * currently only two: minmum utilization and maximum utilization. + * + * All utilization clamping values are MAX aggregated, since: + * - for util_min: we want to run the CPU at least at the max of the minimum + * utilization required by its currently RUNNABLE tasks. + * - for util_max: we want to allow the CPU to run up to the max of the + * maximum utilization allowed by its currently RUNNABLE tasks. + * + * Since on each system we expect only a limited number of different + * utilization clamp values (UCLAMP_BUCKETS), we use a simple array to track + * the metrics required to compute all the per-rq utilization clamp values. + */ +struct uclamp_rq { + unsigned int value; + struct uclamp_bucket bucket[UCLAMP_BUCKETS]; +}; +#endif /* CONFIG_UCLAMP_TASK */ + /* * This is the main, per-CPU runqueue data structure. * @@ -835,6 +877,11 @@ struct rq { unsigned long nr_load_updates; u64 nr_switches; +#ifdef CONFIG_UCLAMP_TASK + /* Utilization clamp values based on CPU's RUNNABLE tasks */ + struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned; +#endif + struct cfs_rq cfs; struct rt_rq rt; struct dl_rq dl; @@ -1649,10 +1696,12 @@ extern const u32 sched_prio_to_wmult[40]; struct sched_class { const struct sched_class *next; +#ifdef CONFIG_UCLAMP_TASK + int uclamp_enabled; +#endif + void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); - void (*yield_task) (struct rq *rq); - bool (*yield_to_task)(struct rq *rq, struct task_struct *p, bool preempt); void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags); @@ -1685,7 +1734,6 @@ struct sched_class { void (*set_curr_task)(struct rq *rq); void (*task_tick)(struct rq *rq, struct task_struct *p, int queued); void (*task_fork)(struct task_struct *p); - void (*task_dead)(struct task_struct *p); /* * The switched_from() call is allowed to drop rq->lock, therefore we @@ -1702,12 +1750,17 @@ struct sched_class { void (*update_curr)(struct rq *rq); + void (*yield_task) (struct rq *rq); + bool (*yield_to_task)(struct rq *rq, struct task_struct *p, bool preempt); + #define TASK_SET_GROUP 0 #define TASK_MOVE_GROUP 1 #ifdef CONFIG_FAIR_GROUP_SCHED void (*task_change_group)(struct task_struct *p, int type); #endif + + void (*task_dead)(struct task_struct *p); }; static inline void put_prev_task(struct rq *rq, struct task_struct *prev) -- 2.20.1