The limit checking in pipe_set_size() (used by fcntl(F_SETPIPE_SZ)) has the following problems: (1) When increasing the pipe capacity, the checks against the limits in /proc/sys/fs/pipe-user-pages-{soft,hard} are made against existing consumption, and exclude the memory required for the increased pipe capacity. The new increase in pipe capacity can then push the total memory used by the user for pipes (possibly far) over a limit. This can also trigger the problem described next. (2) The limit checks are performed even when the new pipe capacity is less than the existing pipe capacity. This can lead to problems if a user sets a large pipe capacity, and then the limits are lowered, with the result that the user will no longer be able to decrease the pipe capacity. (3) As currently implemented, accounting and checking against the limits is done as follows: (a) Test whether the user has exceeded the limit. (b) Make new pipe buffer allocation. (c) Account new allocation against the limits. This is racey. Multiple processes may pass point (a) simultaneously, and then allocate pipe buffers that are accounted for only in step (c). The race means that the user's pipe buffer allocation could be pushed over the limit (by an arbitrary amount, depending on how unlucky we were in the race). [Thanks to Vegard Nossum for spotting this point, which I had missed.] This patch addresses the above problems as follows: * Perform checks against the limits only when increasing a pipe's capacity; an unprivileged user can always decrease a pipe's capacity. * Alter the checks against limits to include the memory required for the new pipe capacity. * Re-order the accounting step so that it precedes the buffer allocation. If the accounting step determines that a limit has been reached, revert the accounting and cause the operation to fail. The program below can be used to demonstrate problems 1 and 2, and the effect of the fix. The program takes one or more command-line arguments. The first argument specifies the number of pipes that the program should create. The remaining arguments are, alternately, pipe capacities that should be set using fcntl(F_SETPIPE_SZ), and sleep intervals (in seconds) between the fcntl() operations. (The sleep intervals allow the possibility to change the limits between fcntl() operations.) Problem 1 ========= Using the test program on an unpatched kernel, we first set some limits: # echo 0 > /proc/sys/fs/pipe-user-pages-soft # echo 1000000000 > /proc/sys/fs/pipe-max-size # echo 10000 > /proc/sys/fs/pipe-user-pages-hard # 40.96 MB Then show that we can set a pipe with capacity (100MB) that is over the hard limit # sudo -u mtk ./test_F_SETPIPE_SZ 1 100000000 Initial pipe capacity: 65536 Loop 1: set pipe capacity to 100000000 bytes F_SETPIPE_SZ returned 134217728 Now set the capacity to 100MB twice. The second call fails (which is probably surprising to most users, since it seems like a no-op): # sudo -u mtk ./test_F_SETPIPE_SZ 1 100000000 0 100000000 Initial pipe capacity: 65536 Loop 1: set pipe capacity to 100000000 bytes F_SETPIPE_SZ returned 134217728 Loop 2: set pipe capacity to 100000000 bytes Loop 2, pipe 0: F_SETPIPE_SZ failed: fcntl: Operation not permitted With a patched kernel, setting a capacity over the limit fails at the first attempt: # echo 0 > /proc/sys/fs/pipe-user-pages-soft # echo 1000000000 > /proc/sys/fs/pipe-max-size # echo 10000 > /proc/sys/fs/pipe-user-pages-hard # sudo -u mtk ./test_F_SETPIPE_SZ 1 100000000 Initial pipe capacity: 65536 Loop 1: set pipe capacity to 100000000 bytes Loop 1, pipe 0: F_SETPIPE_SZ failed: fcntl: Operation not permitted There is a small chance that the change to fix this problem could break user-space, since there are cases where fcntl(F_SETPIPE_SZ) calls that previously succeeded might fail. However, the chances are small, since (a) the pipe-user-pages-{soft,hard} limits are new (in 4.5), and the default soft/hard limits are high/unlimited. Therefore, it seems warranted to make these limits operate more precisely (and behave more like what users probably expect). Problem 2 ========= Running the test program on an unpatched kernel, we first set some limits: # getconf PAGESIZE 4096 # echo 0 > /proc/sys/fs/pipe-user-pages-soft # echo 1000000000 > /proc/sys/fs/pipe-max-size # echo 10000 > /proc/sys/fs/pipe-user-pages-hard # 40.96 MB Now perform two fcntl(F_SETPIPE_SZ) operations on a single pipe, first setting a pipe capacity (10MB), sleeping for a few seconds, during which time the hard limit is lowered, and then set pipe capacity to a smaller amount (5MB): # sudo -u mtk ./test_F_SETPIPE_SZ 1 10000000 15 5000000 & [1] 748 # Initial pipe capacity: 65536 Loop 1: set pipe capacity to 10000000 bytes F_SETPIPE_SZ returned 16777216 Sleeping 15 seconds # echo 1000 > /proc/sys/fs/pipe-user-pages-hard # 4.096 MB # Loop 2: set pipe capacity to 5000000 bytes Loop 2, pipe 0: F_SETPIPE_SZ failed: fcntl: Operation not permitted In this case, the user should be able to lower the limit. With a kernel that has the patch below, the second fcntl() succeeds: # echo 0 > /proc/sys/fs/pipe-user-pages-soft # echo 1000000000 > /proc/sys/fs/pipe-max-size # echo 10000 > /proc/sys/fs/pipe-user-pages-hard # sudo -u mtk ./test_F_SETPIPE_SZ 1 10000000 15 5000000 & [1] 3215 # Initial pipe capacity: 65536 # Loop 1: set pipe capacity to 10000000 bytes F_SETPIPE_SZ returned 16777216 Sleeping 15 seconds # echo 1000 > /proc/sys/fs/pipe-user-pages-hard # Loop 2: set pipe capacity to 5000000 bytes F_SETPIPE_SZ returned 8388608 8x---8x---8x---8x---8x---8x---8x---8x---8x---8x---8x---8x---8x---8x--- /* test_F_SETPIPE_SZ.c (C) 2016, Michael Kerrisk; licensed under GNU GPL version 2 or later Test operation of fcntl(F_SETPIPE_SZ) for setting pipe capacity and interactions with limits defined by /proc/sys/fs/pipe-* files. */ #define _GNU_SOURCE #include <stdio.h> #include <stdlib.h> #include <fcntl.h> #include <unistd.h> int main(int argc, char *argv[]) { int (*pfd)[2]; int npipes; int pcap, rcap; int j, p, s, stime, loop; if (argc < 2) { fprintf(stderr, "Usage: %s num-pipes " "[pipe-capacity sleep-time]...\n", argv[0]); exit(EXIT_FAILURE); } npipes = atoi(argv[1]); pfd = calloc(npipes, sizeof (int [2])); if (pfd == NULL) { perror("calloc"); exit(EXIT_FAILURE); } for (j = 0; j < npipes; j++) { if (pipe(pfd[j]) == -1) { fprintf(stderr, "Loop %d: pipe() failed: ", j); perror("pipe"); exit(EXIT_FAILURE); } } printf("Initial pipe capacity: %d\n", fcntl(pfd[0][0], F_GETPIPE_SZ)); for (j = 2; j < argc; j += 2 ) { loop = j / 2; pcap = atoi(argv[j]); printf(" Loop %d: set pipe capacity to %d bytes\n", loop, pcap); for (p = 0; p < npipes; p++) { s = fcntl(pfd[p][0], F_SETPIPE_SZ, pcap); if (s == -1) { fprintf(stderr, " Loop %d, pipe %d: F_SETPIPE_SZ " "failed: ", loop, p); perror("fcntl"); exit(EXIT_FAILURE); } if (p == 0) { printf(" F_SETPIPE_SZ returned %d\n", s); rcap = s; } else { if (s != rcap) { fprintf(stderr, " Loop %d, pipe %d: F_SETPIPE_SZ " "unexpected return: %d\n", loop, p, s); exit(EXIT_FAILURE); } } stime = (j + 1 < argc) ? atoi(argv[j + 1]) : 0; if (stime > 0) { printf(" Sleeping %d seconds\n", stime); sleep(stime); } } } exit(EXIT_SUCCESS); } 8x---8x---8x---8x---8x---8x---8x---8x---8x---8x---8x---8x---8x---8x--- Cc: Willy Tarreau <w@xxxxxx> Cc: Vegard Nossum <vegard.nossum@xxxxxxxxxx> Cc: socketpair@xxxxxxxxx Cc: Tetsuo Handa <penguin-kernel@xxxxxxxxxxxxxxxxxxx> Cc: Jens Axboe <axboe@xxxxxx> Cc: Al Viro <viro@xxxxxxxxxxxxxxxxxx> Cc: linux-api@xxxxxxxxxxxxxxx Cc: linux-kernel@xxxxxxxxxxxxxxx Signed-off-by: Michael Kerrisk <mtk.manpages@xxxxxxxxx> --- fs/pipe.c | 43 ++++++++++++++++++++++++++++++++----------- 1 file changed, 32 insertions(+), 11 deletions(-) diff --git a/fs/pipe.c b/fs/pipe.c index 37b7f5e..a7470a9 100644 --- a/fs/pipe.c +++ b/fs/pipe.c @@ -1030,6 +1030,7 @@ static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg) { struct pipe_buffer *bufs; unsigned int size, nr_pages; + long ret = 0; size = round_pipe_size(arg); nr_pages = size >> PAGE_SHIFT; @@ -1037,13 +1038,26 @@ static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg) if (!nr_pages) return -EINVAL; - if (!capable(CAP_SYS_RESOURCE) && size > pipe_max_size) - return -EPERM; + account_pipe_buffers(pipe->user, pipe->buffers, nr_pages); - if ((too_many_pipe_buffers_hard(pipe->user) || - too_many_pipe_buffers_soft(pipe->user)) && - !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) - return -EPERM; + /* + * If trying to increase the pipe capacity, check that an + * unprivileged user is not trying to exceed various limits. + * (Decreasing the pipe capacity is always permitted, even + * if the user is currently over a limit.) + */ + if (nr_pages > pipe->buffers) { + if (!capable(CAP_SYS_RESOURCE) && size > pipe_max_size) { + ret = -EPERM; + goto out_revert_acct; + } else if ((too_many_pipe_buffers_hard(pipe->user) || + too_many_pipe_buffers_soft(pipe->user)) && + !capable(CAP_SYS_RESOURCE) && + !capable(CAP_SYS_ADMIN)) { + ret = -EPERM; + goto out_revert_acct; + } + } /* * We can shrink the pipe, if arg >= pipe->nrbufs. Since we don't @@ -1051,13 +1065,17 @@ static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg) * again like we would do for growing. If the pipe currently * contains more buffers than arg, then return busy. */ - if (nr_pages < pipe->nrbufs) - return -EBUSY; + if (nr_pages < pipe->nrbufs) { + ret = -EBUSY; + goto out_revert_acct; + } bufs = kcalloc(nr_pages, sizeof(*bufs), GFP_KERNEL_ACCOUNT | __GFP_NOWARN); - if (unlikely(!bufs)) - return -ENOMEM; + if (unlikely(!bufs)) { + ret = -ENOMEM; + goto out_revert_acct; + } /* * The pipe array wraps around, so just start the new one at zero @@ -1080,12 +1098,15 @@ static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg) memcpy(bufs + head, pipe->bufs, tail * sizeof(struct pipe_buffer)); } - account_pipe_buffers(pipe->user, pipe->buffers, nr_pages); pipe->curbuf = 0; kfree(pipe->bufs); pipe->bufs = bufs; pipe->buffers = nr_pages; return nr_pages * PAGE_SIZE; + +out_revert_acct: + account_pipe_buffers(pipe->user, nr_pages, pipe->buffers); + return ret; } /* -- 2.5.5 -- To unsubscribe from this list: send the line "unsubscribe linux-api" in the body of a message to majordomo@xxxxxxxxxxxxxxx More majordomo info at http://vger.kernel.org/majordomo-info.html