Safety of eBPF programs is statically determined by the verifier, which detects: - loops - out of range jumps - unreachable instructions - invalid instructions - uninitialized register access - uninitialized stack access - misaligned stack access - out of range stack access - invalid calling convention It checks that - R1-R5 registers statisfy function prototype - program terminates - BPF_LD_ABS|IND instructions are only used in socket filters It is configured with: - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); that provides information to the verifer which fields of 'ctx' are accessible (remember 'ctx' is the first argument to eBPF program) - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); reports argument types of kernel helper functions that eBPF program may call, so that verifier can checks that R1-R5 types match prototype More details in Documentation/networking/filter.txt Signed-off-by: Alexei Starovoitov <ast@xxxxxxxxxxxx> --- Documentation/networking/filter.txt | 233 ++++++ include/linux/bpf.h | 49 ++ include/uapi/linux/bpf.h | 1 + kernel/bpf/Makefile | 2 +- kernel/bpf/syscall.c | 2 +- kernel/bpf/verifier.c | 1520 +++++++++++++++++++++++++++++++++++ 6 files changed, 1805 insertions(+), 2 deletions(-) create mode 100644 kernel/bpf/verifier.c diff --git a/Documentation/networking/filter.txt b/Documentation/networking/filter.txt index e14e486f69cd..778f763fce10 100644 --- a/Documentation/networking/filter.txt +++ b/Documentation/networking/filter.txt @@ -995,6 +995,108 @@ BPF_XADD | BPF_DW | BPF_STX: lock xadd *(u64 *)(dst_reg + off16) += src_reg Where size is one of: BPF_B or BPF_H or BPF_W or BPF_DW. Note that 1 and 2 byte atomic increments are not supported. +eBPF verifier +------------- +The safety of the eBPF program is determined in two steps. + +First step does DAG check to disallow loops and other CFG validation. +In particular it will detect programs that have unreachable instructions. +(though classic BPF checker allows them) + +Second step starts from the first insn and descends all possible paths. +It simulates execution of every insn and observes the state change of +registers and stack. + +At the start of the program the register R1 contains a pointer to context +and has type PTR_TO_CTX. +If verifier sees an insn that does R2=R1, then R2 has now type +PTR_TO_CTX as well and can be used on the right hand side of expression. +If R1=PTR_TO_CTX and insn is R2=R1+R1, then R2=INVALID_PTR, +since addition of two valid pointers makes invalid pointer. + +If register was never written to, it's not readable: + bpf_mov R0 = R2 + bpf_exit +will be rejected, since R2 is unreadable at the start of the program. + +After kernel function call, R1-R5 are reset to unreadable and +R0 has a return type of the function. + +Since R6-R9 are callee saved, their state is preserved across the call. + bpf_mov R6 = 1 + bpf_call foo + bpf_mov R0 = R6 + bpf_exit +is a correct program. If there was R1 instead of R6, it would have +been rejected. + +Classic BPF register X is mapped to eBPF register R7 inside sk_convert_filter(), +so that its state is preserved across calls. + +load/store instructions are allowed only with registers of valid types, which +are PTR_TO_CTX, PTR_TO_MAP, PTR_TO_STACK. They are bounds and alignment checked. +For example: + bpf_mov R1 = 1 + bpf_mov R2 = 2 + bpf_xadd *(u32 *)(R1 + 3) += R2 + bpf_exit +will be rejected, since R1 doesn't have a valid pointer type at the time of +execution of instruction bpf_xadd. + +At the start R1 contains pointer to ctx and R1 type is PTR_TO_CTX. +ctx is generic. verifier is configured to known what context is for particular +class of bpf programs. For example, context == skb (for socket filters) and +ctx == seccomp_data for seccomp filters. +A callback is used to customize verifier to restrict eBPF program access to only +certain fields within ctx structure with specified size and alignment. + +For example, the following insn: + bpf_ld R0 = *(u32 *)(R6 + 8) +intends to load a word from address R6 + 8 and store it into R0 +If R6=PTR_TO_CTX, via is_valid_access() callback the verifier will know +that offset 8 of size 4 bytes can be accessed for reading, otherwise +the verifier will reject the program. +If R6=PTR_TO_STACK, then access should be aligned and be within +stack bounds, which are [-MAX_BPF_STACK, 0). In this example offset is 8, +so it will fail verification, since it's out of bounds. + +The verifier will allow eBPF program to read data from stack only after +it wrote into it. +Classic BPF verifier does similar check with M[0-15] memory slots. +For example: + bpf_ld R0 = *(u32 *)(R10 - 4) + bpf_exit +is invalid program. +Though R10 is correct read-only register and has type PTR_TO_STACK +and R10 - 4 is within stack bounds, there were no stores into that location. + +Pointer register spill/fill is tracked as well, since four (R6-R9) +callee saved registers may not be enough for some programs. + +Allowed function calls are customized with bpf_verifier_ops->get_func_proto() +For example, skb_get_nlattr() function has the following definition: + struct bpf_func_proto proto = {RET_INTEGER, PTR_TO_CTX}; +and eBPF verifier will check that this function is always called with first +argument being 'ctx'. In other words R1 must have type PTR_TO_CTX +at the time of bpf_call insn. +After the call register R0 will be set to readable state, so that +program can access it. + +Function calls is a main mechanism to extend functionality of eBPF programs. +Socket filters may let programs to call one set of functions, whereas tracing +filters may allow completely different set. + +If a function made accessible to eBPF program, it needs to be thought through +from security point of view. The verifier will guarantee that the function is +called with valid arguments. + +seccomp vs socket filters have different security restrictions for classic BPF. +Seccomp solves this by two stage verifier: classic BPF verifier is followed +by seccomp verifier. In case of eBPF one configurable verifier is shared for +all use cases. + +See details of eBPF verifier in kernel/bpf/verifier.c + eBPF maps --------- 'maps' is a generic storage of different types for sharing data between kernel @@ -1064,6 +1166,137 @@ size. It will not let programs pass junk values as 'key' and 'value' to bpf_map_*_elem() functions, so these functions (implemented in C inside kernel) can safely access the pointers in all cases. +Understanding eBPF verifier messages +------------------------------------ + +The following are few examples of invalid eBPF programs and verifier error +messages as seen in the log: + +Program with unreachable instructions: +static struct bpf_insn prog[] = { + BPF_EXIT_INSN(), + BPF_EXIT_INSN(), +}; +Error: + unreachable insn 1 + +Program that reads uninitialized register: + BPF_ALU64_REG(BPF_MOV, BPF_REG_0, BPF_REG_2), + BPF_EXIT_INSN(), +Error: + 0: (bf) r0 = r2 + R2 !read_ok + +Program that doesn't initialize R0 before exiting: + BPF_ALU64_REG(BPF_MOV, BPF_REG_2, BPF_REG_1), + BPF_EXIT_INSN(), +Error: + 0: (bf) r2 = r1 + 1: (95) exit + R0 !read_ok + +Program that accesses stack out of bounds: + BPF_ST_MEM(BPF_DW, BPF_REG_10, 8, 0), + BPF_EXIT_INSN(), +Error: + 0: (7a) *(u64 *)(r10 +8) = 0 + invalid stack off=8 size=8 + +Program that doesn't initialize stack before passing its address into function: + BPF_ALU64_REG(BPF_MOV, BPF_REG_2, BPF_REG_10), + BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), + BPF_ALU64_IMM(BPF_MOV, BPF_REG_1, 1), + BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), + BPF_EXIT_INSN(), +Error: + 0: (bf) r2 = r10 + 1: (07) r2 += -8 + 2: (b7) r1 = 1 + 3: (85) call 1 + invalid indirect read from stack off -8+0 size 8 + +Program that uses invalid map_id=2 while calling to map_lookup_elem() function: + BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), + BPF_ALU64_REG(BPF_MOV, BPF_REG_2, BPF_REG_10), + BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), + BPF_ALU64_IMM(BPF_MOV, BPF_REG_1, 2), + BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), + BPF_EXIT_INSN(), +Error: + 0: (7a) *(u64 *)(r10 -8) = 0 + 1: (bf) r2 = r10 + 2: (07) r2 += -8 + 3: (b7) r1 = 2 + 4: (85) call 1 + invalid access to map_id=2 + +Program that doesn't check return value of map_lookup_elem() before accessing +map element: + BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), + BPF_ALU64_REG(BPF_MOV, BPF_REG_2, BPF_REG_10), + BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), + BPF_ALU64_IMM(BPF_MOV, BPF_REG_1, 1), + BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), + BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0), + BPF_EXIT_INSN(), +Error: + 0: (7a) *(u64 *)(r10 -8) = 0 + 1: (bf) r2 = r10 + 2: (07) r2 += -8 + 3: (b7) r1 = 1 + 4: (85) call 1 + 5: (7a) *(u64 *)(r0 +0) = 0 + R0 invalid mem access 'map_value_or_null' + +Program that correctly checks map_lookup_elem() returned value for NULL, but +accesses the memory with incorrect alignment: + BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), + BPF_ALU64_REG(BPF_MOV, BPF_REG_2, BPF_REG_10), + BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), + BPF_ALU64_IMM(BPF_MOV, BPF_REG_1, 1), + BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), + BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1), + BPF_ST_MEM(BPF_DW, BPF_REG_0, 4, 0), + BPF_EXIT_INSN(), +Error: + 0: (7a) *(u64 *)(r10 -8) = 0 + 1: (bf) r2 = r10 + 2: (07) r2 += -8 + 3: (b7) r1 = 1 + 4: (85) call 1 + 5: (15) if r0 == 0x0 goto pc+1 + R0=map_value1 R10=fp + 6: (7a) *(u64 *)(r0 +4) = 0 + misaligned access off 4 size 8 + +Program that correctly checks map_lookup_elem() returned value for NULL and +accesses memory with correct alignment in one side of 'if' branch, but fails +to do so in the other side of 'if' branch: + BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), + BPF_ALU64_REG(BPF_MOV, BPF_REG_2, BPF_REG_10), + BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), + BPF_ALU64_IMM(BPF_MOV, BPF_REG_1, 1), + BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), + BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2), + BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0), + BPF_EXIT_INSN(), + BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 1), + BPF_EXIT_INSN(), +Error: + 0: (7a) *(u64 *)(r10 -8) = 0 + 1: (bf) r2 = r10 + 2: (07) r2 += -8 + 3: (b7) r1 = 1 + 4: (85) call 1 + 5: (15) if r0 == 0x0 goto pc+2 + R0=map_value1 R10=fp + 6: (7a) *(u64 *)(r0 +0) = 0 + 7: (95) exit + + from 5 to 8: R0=imm0 R10=fp + 8: (7a) *(u64 *)(r0 +0) = 1 + R0 invalid mem access 'imm' + Testing ------- diff --git a/include/linux/bpf.h b/include/linux/bpf.h index 4967619595cc..b5e90efddfcf 100644 --- a/include/linux/bpf.h +++ b/include/linux/bpf.h @@ -46,6 +46,31 @@ struct bpf_map_type_list { void bpf_register_map_type(struct bpf_map_type_list *tl); struct bpf_map *bpf_map_get(u32 map_id); +/* function argument constraints */ +enum bpf_arg_type { + ARG_ANYTHING = 0, /* any argument is ok */ + + /* the following constraints used to prototype + * bpf_map_lookup/update/delete_elem() functions + */ + ARG_CONST_MAP_ID, /* int const argument used as map_id */ + ARG_PTR_TO_MAP_KEY, /* pointer to stack used as map key */ + ARG_PTR_TO_MAP_VALUE, /* pointer to stack used as map value */ + + /* the following constraints used to prototype bpf_memcmp() and other + * functions that access data on eBPF program stack + */ + ARG_PTR_TO_STACK, /* any pointer to eBPF program stack */ + ARG_CONST_STACK_SIZE, /* number of bytes accessed from stack */ +}; + +/* type of values returned from helper functions */ +enum bpf_return_type { + RET_INTEGER, /* function returns integer */ + RET_VOID, /* function doesn't return anything */ + RET_PTR_TO_MAP_OR_NULL, /* function returns a pointer to map elem value or NULL */ +}; + /* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL * instructions after verifying @@ -53,11 +78,33 @@ struct bpf_map *bpf_map_get(u32 map_id); struct bpf_func_proto { u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); bool gpl_only; + enum bpf_return_type ret_type; + enum bpf_arg_type arg1_type; + enum bpf_arg_type arg2_type; + enum bpf_arg_type arg3_type; + enum bpf_arg_type arg4_type; + enum bpf_arg_type arg5_type; +}; + +/* bpf_context is intentionally undefined structure. Pointer to bpf_context is + * the first argument to eBPF programs. + * For socket filters: 'struct bpf_context *' == 'struct sk_buff *' + */ +struct bpf_context; + +enum bpf_access_type { + BPF_READ = 1, + BPF_WRITE = 2 }; struct bpf_verifier_ops { /* return eBPF function prototype for verification */ const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); + + /* return true if 'size' wide access at offset 'off' within bpf_context + * with 'type' (read or write) is allowed + */ + bool (*is_valid_access)(int off, int size, enum bpf_access_type type); }; struct bpf_prog_type_list { @@ -78,5 +125,7 @@ struct bpf_prog_info { void free_bpf_prog_info(struct bpf_prog_info *info); struct sk_filter *bpf_prog_get(u32 ufd); +/* verify correctness of eBPF program */ +int bpf_check(struct sk_filter *fp); #endif /* _LINUX_BPF_H */ diff --git a/include/uapi/linux/bpf.h b/include/uapi/linux/bpf.h index 06ba71b49f64..3f288e1d08f1 100644 --- a/include/uapi/linux/bpf.h +++ b/include/uapi/linux/bpf.h @@ -369,6 +369,7 @@ enum bpf_prog_attributes { enum bpf_prog_type { BPF_PROG_TYPE_UNSPEC, + BPF_PROG_TYPE_SOCKET_FILTER, }; /* integer value in 'imm' field of BPF_CALL instruction selects which helper diff --git a/kernel/bpf/Makefile b/kernel/bpf/Makefile index 558e12712ebc..95a9035e0f29 100644 --- a/kernel/bpf/Makefile +++ b/kernel/bpf/Makefile @@ -1 +1 @@ -obj-y := core.o syscall.o hashtab.o +obj-y := core.o syscall.o hashtab.o verifier.o diff --git a/kernel/bpf/syscall.c b/kernel/bpf/syscall.c index 9e45ca6b6937..9d441f17548e 100644 --- a/kernel/bpf/syscall.c +++ b/kernel/bpf/syscall.c @@ -634,7 +634,7 @@ static int bpf_prog_load(enum bpf_prog_type type, struct nlattr __user *uattr, mutex_lock(&bpf_map_lock); /* run eBPF verifier */ - /* err = bpf_check(prog); */ + err = bpf_check(prog); if (err == 0 && prog->info->used_maps) { /* program passed verifier and it's using some maps, diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c new file mode 100644 index 000000000000..0fce771632b4 --- /dev/null +++ b/kernel/bpf/verifier.c @@ -0,0 +1,1520 @@ +/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of version 2 of the GNU General Public + * License as published by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, but + * WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * General Public License for more details. + */ +#include <linux/kernel.h> +#include <linux/types.h> +#include <linux/slab.h> +#include <linux/bpf.h> +#include <linux/filter.h> +#include <linux/capability.h> + +/* bpf_check() is a static code analyzer that walks eBPF program + * instruction by instruction and updates register/stack state. + * All paths of conditional branches are analyzed until 'bpf_exit' insn. + * + * At the first pass depth-first-search verifies that the BPF program is a DAG. + * It rejects the following programs: + * - larger than BPF_MAXINSNS insns + * - if loop is present (detected via back-edge) + * - unreachable insns exist (shouldn't be a forest. program = one function) + * - out of bounds or malformed jumps + * The second pass is all possible path descent from the 1st insn. + * Conditional branch target insns keep a link list of verifier states. + * If the state already visited, this path can be pruned. + * If it wasn't a DAG, such state prunning would be incorrect, since it would + * skip cycles. Since it's analyzing all pathes through the program, + * the length of the analysis is limited to 32k insn, which may be hit even + * if insn_cnt < 4K, but there are too many branches that change stack/regs. + * Number of 'branches to be analyzed' is limited to 1k + * + * On entry to each instruction, each register has a type, and the instruction + * changes the types of the registers depending on instruction semantics. + * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is + * copied to R1. + * + * All registers are 64-bit (even on 32-bit arch) + * R0 - return register + * R1-R5 argument passing registers + * R6-R9 callee saved registers + * R10 - frame pointer read-only + * + * At the start of BPF program the register R1 contains a pointer to bpf_context + * and has type PTR_TO_CTX. + * + * Most of the time the registers have UNKNOWN_VALUE type, which + * means the register has some value, but it's not a valid pointer. + * Verifier doesn't attemp to track all arithmetic operations on pointers. + * The only special case is the sequence: + * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), + * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), + * 1st insn copies R10 (which has FRAME_PTR) type into R1 + * and 2nd arithmetic instruction is pattern matched to recognize + * that it wants to construct a pointer to some element within stack. + * So after 2nd insn, the register R1 has type PTR_TO_STACK + * (and -20 constant is saved for further stack bounds checking). + * Meaning that this reg is a pointer to stack plus known immediate constant. + * + * When program is doing load or store insns the type of base register can be: + * PTR_TO_MAP, PTR_TO_CTX, FRAME_PTR. These are three pointer types recognized + * by check_mem_access() function. + * + * PTR_TO_MAP means that this register is pointing to 'map element value' + * and the range of [ptr, ptr + map's value_size) is accessible. + * + * registers used to pass pointers to function calls are verified against + * function prototypes + * + * ARG_PTR_TO_MAP_KEY is a function argument constraint. + * It means that the register type passed to this function must be + * PTR_TO_STACK and it will be used inside the function as + * 'pointer to map element key' + * + * For example the argument constraints for bpf_map_lookup_elem(): + * .ret_type = RET_PTR_TO_MAP_OR_NULL, + * .arg1_type = ARG_CONST_MAP_ID, + * .arg2_type = ARG_PTR_TO_MAP_KEY, + * + * ret_type says that this function returns 'pointer to map elem value or null' + * 1st argument is a 'const immediate' value which must be one of valid map_ids. + * 2nd argument is a pointer to stack, which will be used inside the function as + * a pointer to map element key. + * + * On the kernel side the helper function looks like: + * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) + * { + * struct bpf_map *map; + * int map_id = r1; + * void *key = (void *) (unsigned long) r2; + * void *value; + * + * here kernel can access 'key' pointer safely, knowing that + * [key, key + map->key_size) bytes are valid and were initialized on + * the stack of eBPF program. + * } + * + * Corresponding eBPF program looked like: + * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR + * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK + * BPF_MOV64_IMM(BPF_REG_1, MAP_ID), // after this insn R1 type is CONST_ARG + * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), + * here verifier looks a prototype of map_lookup_elem and sees: + * .arg1_type == ARG_CONST_MAP_ID and R1->type == CONST_ARG, which is ok so far, + * then it goes and finds a map with map_id equal to R1->imm value. + * Now verifier knows that this map has key of key_size bytes + * + * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, + * Now verifier checks that [R2, R2 + map's key_size) are within stack limits + * and were initialized prior to this call. + * If it's ok, then verifier allows this BPF_CALL insn and looks at + * .ret_type which is RET_PTR_TO_MAP_OR_NULL, so it sets + * R0->type = PTR_TO_MAP_OR_NULL which means bpf_map_lookup_elem() function + * returns ether pointer to map value or NULL. + * + * When type PTR_TO_MAP_OR_NULL passes through 'if (reg != 0) goto +off' insn, + * the register holding that pointer in the true branch changes state to + * PTR_TO_MAP and the same register changes state to CONST_IMM in the false + * branch. See check_cond_jmp_op(). + * + * After the call R0 is set to return type of the function and registers R1-R5 + * are set to NOT_INIT to indicate that they are no longer readable. + * + * load/store alignment is checked: + * BPF_STX_MEM(BPF_DW, dest_reg, src_reg, 3) + * is rejected, because it's misaligned + * + * load/store to stack are bounds checked and register spill is tracked + * BPF_STX_MEM(BPF_B, BPF_REG_10, src_reg, 0) + * is rejected, because it's out of bounds + * + * load/store to map are bounds checked: + * BPF_STX_MEM(BPF_H, dest_reg, src_reg, 8) + * is ok, if dest_reg->type == PTR_TO_MAP and + * 8 + sizeof(u16) <= map_info->value_size + * + * load/store to bpf_context are checked against known fields + */ + +#define _(OP) ({ int ret = OP; if (ret < 0) return ret; }) + +/* types of values stored in eBPF registers */ +enum bpf_reg_type { + NOT_INIT = 0, /* nothing was written into register */ + UNKNOWN_VALUE, /* reg doesn't contain a valid pointer */ + PTR_TO_CTX, /* reg points to bpf_context */ + PTR_TO_MAP, /* reg points to map element value */ + PTR_TO_MAP_OR_NULL, /* points to map element value or NULL */ + FRAME_PTR, /* reg == frame_pointer */ + PTR_TO_STACK, /* reg == frame_pointer + imm */ + CONST_IMM, /* constant integer value */ +}; + +struct reg_state { + enum bpf_reg_type type; + int imm; +}; + +enum bpf_stack_slot_type { + STACK_INVALID, /* nothing was stored in this stack slot */ + STACK_SPILL, /* 1st byte of register spilled into stack */ + STACK_SPILL_PART, /* other 7 bytes of register spill */ + STACK_MISC /* BPF program wrote some data into this slot */ +}; + +struct bpf_stack_slot { + enum bpf_stack_slot_type stype; + enum bpf_reg_type type; + int imm; +}; + +/* state of the program: + * type of all registers and stack info + */ +struct verifier_state { + struct reg_state regs[MAX_BPF_REG]; + struct bpf_stack_slot stack[MAX_BPF_STACK]; +}; + +/* linked list of verifier states used to prune search */ +struct verifier_state_list { + struct verifier_state state; + struct verifier_state_list *next; +}; + +/* verifier_state + insn_idx are pushed to stack when branch is encountered */ +struct verifier_stack_elem { + /* verifer state is 'st' + * before processing instruction 'insn_idx' + * and after processing instruction 'prev_insn_idx' + */ + struct verifier_state st; + int insn_idx; + int prev_insn_idx; + struct verifier_stack_elem *next; +}; + +#define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */ + +/* single container for all structs + * one verifier_env per bpf_check() call + */ +struct verifier_env { + struct sk_filter *prog; /* eBPF program being verified */ + struct verifier_stack_elem *head; /* stack of verifier states to be processed */ + int stack_size; /* number of states to be processed */ + struct verifier_state cur_state; /* current verifier state */ + struct verifier_state_list **branch_landing; /* search prunning optimization */ + u32 used_maps[MAX_USED_MAPS]; /* array of map_id's used by eBPF program */ + u32 used_map_cnt; /* number of used maps */ +}; + +/* verbose verifier prints what it's seeing + * bpf_check() is called under map lock, so no race to access this global var + */ +static bool verbose_on; + +/* when verifier rejects eBPF program, it does a second path with verbose on + * to dump the verification trace to the log, so the user can figure out what's + * wrong with the program + */ +static int verbose(const char *fmt, ...) +{ + va_list args; + int ret; + + if (!verbose_on) + return 0; + + va_start(args, fmt); + ret = vprintk(fmt, args); + va_end(args); + return ret; +} + +/* string representation of 'enum bpf_reg_type' */ +static const char * const reg_type_str[] = { + [NOT_INIT] = "?", + [UNKNOWN_VALUE] = "inv", + [PTR_TO_CTX] = "ctx", + [PTR_TO_MAP] = "map_value", + [PTR_TO_MAP_OR_NULL] = "map_value_or_null", + [FRAME_PTR] = "fp", + [PTR_TO_STACK] = "fp", + [CONST_IMM] = "imm", +}; + +static void pr_cont_verifier_state(struct verifier_env *env) +{ + enum bpf_reg_type t; + int i; + + for (i = 0; i < MAX_BPF_REG; i++) { + t = env->cur_state.regs[i].type; + if (t == NOT_INIT) + continue; + pr_cont(" R%d=%s", i, reg_type_str[t]); + if (t == CONST_IMM || + t == PTR_TO_STACK || + t == PTR_TO_MAP_OR_NULL || + t == PTR_TO_MAP) + pr_cont("%d", env->cur_state.regs[i].imm); + } + for (i = 0; i < MAX_BPF_STACK; i++) { + if (env->cur_state.stack[i].stype == STACK_SPILL) + pr_cont(" fp%d=%s", -MAX_BPF_STACK + i, + reg_type_str[env->cur_state.stack[i].type]); + } + pr_cont("\n"); +} + +static const char *const bpf_class_string[] = { + "ld", "ldx", "st", "stx", "alu", "jmp", "BUG", "alu64" +}; + +static const char *const bpf_alu_string[] = { + "+=", "-=", "*=", "/=", "|=", "&=", "<<=", ">>=", "neg", + "%=", "^=", "=", "s>>=", "endian", "BUG", "BUG" +}; + +static const char *const bpf_ldst_string[] = { + "u32", "u16", "u8", "u64" +}; + +static const char *const bpf_jmp_string[] = { + "jmp", "==", ">", ">=", "&", "!=", "s>", "s>=", "call", "exit" +}; + +static void pr_cont_bpf_insn(struct bpf_insn *insn) +{ + u8 class = BPF_CLASS(insn->code); + + if (class == BPF_ALU || class == BPF_ALU64) { + if (BPF_SRC(insn->code) == BPF_X) + pr_cont("(%02x) %sr%d %s %sr%d\n", + insn->code, class == BPF_ALU ? "(u32) " : "", + insn->dst_reg, + bpf_alu_string[BPF_OP(insn->code) >> 4], + class == BPF_ALU ? "(u32) " : "", + insn->src_reg); + else + pr_cont("(%02x) %sr%d %s %s%d\n", + insn->code, class == BPF_ALU ? "(u32) " : "", + insn->dst_reg, + bpf_alu_string[BPF_OP(insn->code) >> 4], + class == BPF_ALU ? "(u32) " : "", + insn->imm); + } else if (class == BPF_STX) { + if (BPF_MODE(insn->code) == BPF_MEM) + pr_cont("(%02x) *(%s *)(r%d %+d) = r%d\n", + insn->code, + bpf_ldst_string[BPF_SIZE(insn->code) >> 3], + insn->dst_reg, + insn->off, insn->src_reg); + else if (BPF_MODE(insn->code) == BPF_XADD) + pr_cont("(%02x) lock *(%s *)(r%d %+d) += r%d\n", + insn->code, + bpf_ldst_string[BPF_SIZE(insn->code) >> 3], + insn->dst_reg, insn->off, + insn->src_reg); + else + pr_cont("BUG_%02x\n", insn->code); + } else if (class == BPF_ST) { + if (BPF_MODE(insn->code) != BPF_MEM) { + pr_cont("BUG_st_%02x\n", insn->code); + return; + } + pr_cont("(%02x) *(%s *)(r%d %+d) = %d\n", + insn->code, + bpf_ldst_string[BPF_SIZE(insn->code) >> 3], + insn->dst_reg, + insn->off, insn->imm); + } else if (class == BPF_LDX) { + if (BPF_MODE(insn->code) != BPF_MEM) { + pr_cont("BUG_ldx_%02x\n", insn->code); + return; + } + pr_cont("(%02x) r%d = *(%s *)(r%d %+d)\n", + insn->code, insn->dst_reg, + bpf_ldst_string[BPF_SIZE(insn->code) >> 3], + insn->src_reg, insn->off); + } else if (class == BPF_LD) { + if (BPF_MODE(insn->code) == BPF_ABS) { + pr_cont("(%02x) r0 = *(%s *)skb[%d]\n", + insn->code, + bpf_ldst_string[BPF_SIZE(insn->code) >> 3], + insn->imm); + } else if (BPF_MODE(insn->code) == BPF_IND) { + pr_cont("(%02x) r0 = *(%s *)skb[r%d + %d]\n", + insn->code, + bpf_ldst_string[BPF_SIZE(insn->code) >> 3], + insn->src_reg, insn->imm); + } else { + pr_cont("BUG_ld_%02x\n", insn->code); + return; + } + } else if (class == BPF_JMP) { + u8 opcode = BPF_OP(insn->code); + + if (opcode == BPF_CALL) { + pr_cont("(%02x) call %d\n", insn->code, insn->imm); + } else if (insn->code == (BPF_JMP | BPF_JA)) { + pr_cont("(%02x) goto pc%+d\n", + insn->code, insn->off); + } else if (insn->code == (BPF_JMP | BPF_EXIT)) { + pr_cont("(%02x) exit\n", insn->code); + } else if (BPF_SRC(insn->code) == BPF_X) { + pr_cont("(%02x) if r%d %s r%d goto pc%+d\n", + insn->code, insn->dst_reg, + bpf_jmp_string[BPF_OP(insn->code) >> 4], + insn->src_reg, insn->off); + } else { + pr_cont("(%02x) if r%d %s 0x%x goto pc%+d\n", + insn->code, insn->dst_reg, + bpf_jmp_string[BPF_OP(insn->code) >> 4], + insn->imm, insn->off); + } + } else { + pr_cont("(%02x) %s\n", insn->code, bpf_class_string[class]); + } +} + +static int pop_stack(struct verifier_env *env, int *prev_insn_idx) +{ + struct verifier_stack_elem *elem; + int insn_idx; + + if (env->head == NULL) + return -1; + + memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state)); + insn_idx = env->head->insn_idx; + if (prev_insn_idx) + *prev_insn_idx = env->head->prev_insn_idx; + elem = env->head->next; + kfree(env->head); + env->head = elem; + env->stack_size--; + return insn_idx; +} + +static struct verifier_state *push_stack(struct verifier_env *env, int insn_idx, + int prev_insn_idx) +{ + struct verifier_stack_elem *elem; + + elem = kmalloc(sizeof(struct verifier_stack_elem), GFP_KERNEL); + if (!elem) + goto err; + + memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state)); + elem->insn_idx = insn_idx; + elem->prev_insn_idx = prev_insn_idx; + elem->next = env->head; + env->head = elem; + env->stack_size++; + if (env->stack_size > 1024) { + verbose("BPF program is too complex\n"); + goto err; + } + return &elem->st; +err: + /* pop all elements and return */ + while (pop_stack(env, NULL) >= 0); + return NULL; +} + +#define CALLER_SAVED_REGS 6 +static const int caller_saved[CALLER_SAVED_REGS] = { + BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 +}; + +static void init_reg_state(struct reg_state *regs) +{ + int i; + + for (i = 0; i < MAX_BPF_REG; i++) { + regs[i].type = NOT_INIT; + regs[i].imm = 0; + } + + /* frame pointer */ + regs[BPF_REG_FP].type = FRAME_PTR; + + /* 1st arg to a function */ + regs[BPF_REG_1].type = PTR_TO_CTX; +} + +static void mark_reg_unknown_value(struct reg_state *regs, int regno) +{ + regs[regno].type = UNKNOWN_VALUE; + regs[regno].imm = 0; +} + +static int check_reg_arg(struct reg_state *regs, int regno, bool is_src) +{ + if (is_src) { + if (regs[regno].type == NOT_INIT) { + verbose("R%d !read_ok\n", regno); + return -EACCES; + } + } else { + if (regno == BPF_REG_FP) + /* frame pointer is read only */ + return -EACCES; + mark_reg_unknown_value(regs, regno); + } + return 0; +} + +static int bpf_size_to_bytes(int bpf_size) +{ + if (bpf_size == BPF_W) + return 4; + else if (bpf_size == BPF_H) + return 2; + else if (bpf_size == BPF_B) + return 1; + else if (bpf_size == BPF_DW) + return 8; + else + return -EACCES; +} + +static int check_stack_write(struct verifier_state *state, int off, int size, + int value_regno) +{ + struct bpf_stack_slot *slot; + int i; + + if (value_regno >= 0 && + (state->regs[value_regno].type == PTR_TO_MAP || + state->regs[value_regno].type == PTR_TO_STACK || + state->regs[value_regno].type == PTR_TO_CTX)) { + + /* register containing pointer is being spilled into stack */ + if (size != 8) { + verbose("invalid size of register spill\n"); + return -EACCES; + } + + slot = &state->stack[MAX_BPF_STACK + off]; + slot->stype = STACK_SPILL; + /* save register state */ + slot->type = state->regs[value_regno].type; + slot->imm = state->regs[value_regno].imm; + for (i = 1; i < 8; i++) { + slot = &state->stack[MAX_BPF_STACK + off + i]; + slot->stype = STACK_SPILL_PART; + slot->type = UNKNOWN_VALUE; + slot->imm = 0; + } + } else { + + /* regular write of data into stack */ + for (i = 0; i < size; i++) { + slot = &state->stack[MAX_BPF_STACK + off + i]; + slot->stype = STACK_MISC; + slot->type = UNKNOWN_VALUE; + slot->imm = 0; + } + } + return 0; +} + +static int check_stack_read(struct verifier_state *state, int off, int size, + int value_regno) +{ + int i; + struct bpf_stack_slot *slot; + + slot = &state->stack[MAX_BPF_STACK + off]; + + if (slot->stype == STACK_SPILL) { + if (size != 8) { + verbose("invalid size of register spill\n"); + return -EACCES; + } + for (i = 1; i < 8; i++) { + if (state->stack[MAX_BPF_STACK + off + i].stype != + STACK_SPILL_PART) { + verbose("corrupted spill memory\n"); + return -EACCES; + } + } + + /* restore register state from stack */ + state->regs[value_regno].type = slot->type; + state->regs[value_regno].imm = slot->imm; + return 0; + } else { + for (i = 0; i < size; i++) { + if (state->stack[MAX_BPF_STACK + off + i].stype != + STACK_MISC) { + verbose("invalid read from stack off %d+%d size %d\n", + off, i, size); + return -EACCES; + } + } + /* have read misc data from the stack */ + mark_reg_unknown_value(state->regs, value_regno); + return 0; + } +} + +static int remember_map_id(struct verifier_env *env, u32 map_id) +{ + int i; + + /* check whether we recorded this map_id already */ + for (i = 0; i < env->used_map_cnt; i++) + if (env->used_maps[i] == map_id) + return 0; + + if (env->used_map_cnt >= MAX_USED_MAPS) + return -E2BIG; + + /* remember this map_id */ + env->used_maps[env->used_map_cnt++] = map_id; + return 0; +} + +static int get_map_info(struct verifier_env *env, u32 map_id, + struct bpf_map **map) +{ + /* if BPF program contains bpf_map_lookup_elem(map_id, key) + * the incorrect map_id will be caught here + */ + *map = bpf_map_get(map_id); + if (!*map) { + verbose("invalid access to map_id=%d\n", map_id); + return -EACCES; + } + + _(remember_map_id(env, map_id)); + + return 0; +} + +/* check read/write into map element returned by bpf_map_lookup_elem() */ +static int check_map_access(struct verifier_env *env, int regno, int off, + int size) +{ + struct bpf_map *map; + int map_id = env->cur_state.regs[regno].imm; + + _(get_map_info(env, map_id, &map)); + + if (off < 0 || off + size > map->value_size) { + verbose("invalid access to map_id=%d leaf_size=%d off=%d size=%d\n", + map_id, map->value_size, off, size); + return -EACCES; + } + return 0; +} + +/* check access to 'struct bpf_context' fields */ +static int check_ctx_access(struct verifier_env *env, int off, int size, + enum bpf_access_type t) +{ + if (env->prog->info->ops->is_valid_access && + env->prog->info->ops->is_valid_access(off, size, t)) + return 0; + + verbose("invalid bpf_context access off=%d size=%d\n", off, size); + return -EACCES; +} + +static int check_mem_access(struct verifier_env *env, int regno, int off, + int bpf_size, enum bpf_access_type t, + int value_regno) +{ + struct verifier_state *state = &env->cur_state; + int size; + + _(size = bpf_size_to_bytes(bpf_size)); + + if (off % size != 0) { + verbose("misaligned access off %d size %d\n", off, size); + return -EACCES; + } + + if (state->regs[regno].type == PTR_TO_MAP) { + _(check_map_access(env, regno, off, size)); + if (t == BPF_READ) + mark_reg_unknown_value(state->regs, value_regno); + } else if (state->regs[regno].type == PTR_TO_CTX) { + _(check_ctx_access(env, off, size, t)); + if (t == BPF_READ) + mark_reg_unknown_value(state->regs, value_regno); + } else if (state->regs[regno].type == FRAME_PTR) { + if (off >= 0 || off < -MAX_BPF_STACK) { + verbose("invalid stack off=%d size=%d\n", off, size); + return -EACCES; + } + if (t == BPF_WRITE) + _(check_stack_write(state, off, size, value_regno)); + else + _(check_stack_read(state, off, size, value_regno)); + } else { + verbose("R%d invalid mem access '%s'\n", + regno, reg_type_str[state->regs[regno].type]); + return -EACCES; + } + return 0; +} + +/* when register 'regno' is passed into function that will read 'access_size' + * bytes from that pointer, make sure that it's within stack boundary + * and all elements of stack are initialized + */ +static int check_stack_boundary(struct verifier_env *env, + int regno, int access_size) +{ + struct verifier_state *state = &env->cur_state; + struct reg_state *regs = state->regs; + int off, i; + + if (regs[regno].type != PTR_TO_STACK) + return -EACCES; + + off = regs[regno].imm; + if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || + access_size <= 0) { + verbose("invalid stack type R%d off=%d access_size=%d\n", + regno, off, access_size); + return -EACCES; + } + + for (i = 0; i < access_size; i++) { + if (state->stack[MAX_BPF_STACK + off + i].stype != STACK_MISC) { + verbose("invalid indirect read from stack off %d+%d size %d\n", + off, i, access_size); + return -EACCES; + } + } + return 0; +} + +static int check_func_arg(struct verifier_env *env, int regno, + enum bpf_arg_type arg_type, int *map_id, + struct bpf_map **mapp) +{ + struct reg_state *reg = env->cur_state.regs + regno; + enum bpf_reg_type expected_type; + + if (arg_type == ARG_ANYTHING) + return 0; + + if (reg->type == NOT_INIT) { + verbose("R%d !read_ok\n", regno); + return -EACCES; + } + + if (arg_type == ARG_PTR_TO_MAP_KEY || arg_type == ARG_PTR_TO_MAP_VALUE) { + expected_type = PTR_TO_STACK; + } else if (arg_type == ARG_CONST_MAP_ID || arg_type == ARG_CONST_STACK_SIZE) { + expected_type = CONST_IMM; + } else { + verbose("unsupported arg_type %d\n", arg_type); + return -EFAULT; + } + + if (reg->type != expected_type) { + verbose("R%d type=%s expected=%s\n", regno, + reg_type_str[reg->type], reg_type_str[expected_type]); + return -EACCES; + } + + if (arg_type == ARG_CONST_MAP_ID) { + /* bpf_map_xxx(map_id) call: check that map_id is valid */ + *map_id = reg->imm; + _(get_map_info(env, reg->imm, mapp)); + } else if (arg_type == ARG_PTR_TO_MAP_KEY) { + /* + * bpf_map_xxx(..., map_id, ..., key) call: + * check that [key, key + map->key_size) are within + * stack limits and initialized + */ + if (!*mapp) { + /* + * in function declaration map_id must come before + * map_key or map_elem, so that it's verified + * and known before we have to check map_key here + */ + verbose("invalid map_id to access map->key\n"); + return -EACCES; + } + _(check_stack_boundary(env, regno, (*mapp)->key_size)); + } else if (arg_type == ARG_PTR_TO_MAP_VALUE) { + /* + * bpf_map_xxx(..., map_id, ..., value) call: + * check [value, value + map->value_size) validity + */ + if (!*mapp) { + verbose("invalid map_id to access map->elem\n"); + return -EACCES; + } + _(check_stack_boundary(env, regno, (*mapp)->value_size)); + } else if (arg_type == ARG_CONST_STACK_SIZE) { + /* + * bpf_xxx(..., buf, len) call will access 'len' bytes + * from stack pointer 'buf'. Check it + * note: regno == len, regno - 1 == buf + */ + _(check_stack_boundary(env, regno - 1, reg->imm)); + } + + return 0; +} + +static int check_call(struct verifier_env *env, int func_id) +{ + struct verifier_state *state = &env->cur_state; + const struct bpf_func_proto *fn = NULL; + struct reg_state *regs = state->regs; + struct bpf_map *map = NULL; + struct reg_state *reg; + int map_id = -1; + int i; + + /* find function prototype */ + if (func_id <= 0 || func_id >= __BPF_FUNC_MAX_ID) { + verbose("invalid func %d\n", func_id); + return -EINVAL; + } + + if (env->prog->info->ops->get_func_proto) + fn = env->prog->info->ops->get_func_proto(func_id); + + if (!fn) { + verbose("unknown func %d\n", func_id); + return -EINVAL; + } + + /* eBPF programs must be GPL compatible to use GPL-ed functions */ + if (!env->prog->info->is_gpl_compatible && fn->gpl_only) { + verbose("cannot call GPL only function from proprietary program\n"); + return -EINVAL; + } + + /* check args */ + _(check_func_arg(env, BPF_REG_1, fn->arg1_type, &map_id, &map)); + _(check_func_arg(env, BPF_REG_2, fn->arg2_type, &map_id, &map)); + _(check_func_arg(env, BPF_REG_3, fn->arg3_type, &map_id, &map)); + _(check_func_arg(env, BPF_REG_4, fn->arg4_type, &map_id, &map)); + _(check_func_arg(env, BPF_REG_5, fn->arg5_type, &map_id, &map)); + + /* reset caller saved regs */ + for (i = 0; i < CALLER_SAVED_REGS; i++) { + reg = regs + caller_saved[i]; + reg->type = NOT_INIT; + reg->imm = 0; + } + + /* update return register */ + if (fn->ret_type == RET_INTEGER) { + regs[BPF_REG_0].type = UNKNOWN_VALUE; + } else if (fn->ret_type == RET_VOID) { + regs[BPF_REG_0].type = NOT_INIT; + } else if (fn->ret_type == RET_PTR_TO_MAP_OR_NULL) { + regs[BPF_REG_0].type = PTR_TO_MAP_OR_NULL; + /* + * remember map_id, so that check_map_access() + * can check 'value_size' boundary of memory access + * to map element returned from bpf_map_lookup_elem() + */ + regs[BPF_REG_0].imm = map_id; + } else { + verbose("unknown return type %d of func %d\n", + fn->ret_type, func_id); + return -EINVAL; + } + return 0; +} + +/* check validity of 32-bit and 64-bit arithmetic operations */ +static int check_alu_op(struct reg_state *regs, struct bpf_insn *insn) +{ + u8 opcode = BPF_OP(insn->code); + + if (opcode == BPF_END || opcode == BPF_NEG) { + if (BPF_SRC(insn->code) != BPF_X) + return -EINVAL; + /* check src operand */ + _(check_reg_arg(regs, insn->dst_reg, 1)); + + /* check dest operand */ + _(check_reg_arg(regs, insn->dst_reg, 0)); + + } else if (opcode == BPF_MOV) { + + if (BPF_SRC(insn->code) == BPF_X) + /* check src operand */ + _(check_reg_arg(regs, insn->src_reg, 1)); + + /* check dest operand */ + _(check_reg_arg(regs, insn->dst_reg, 0)); + + if (BPF_SRC(insn->code) == BPF_X) { + if (BPF_CLASS(insn->code) == BPF_ALU64) { + /* case: R1 = R2 + * copy register state to dest reg + */ + regs[insn->dst_reg].type = regs[insn->src_reg].type; + regs[insn->dst_reg].imm = regs[insn->src_reg].imm; + } else { + regs[insn->dst_reg].type = UNKNOWN_VALUE; + regs[insn->dst_reg].imm = 0; + } + } else { + /* case: R = imm + * remember the value we stored into this reg + */ + regs[insn->dst_reg].type = CONST_IMM; + regs[insn->dst_reg].imm = insn->imm; + } + + } else { /* all other ALU ops: and, sub, xor, add, ... */ + + int stack_relative = 0; + + if (BPF_SRC(insn->code) == BPF_X) + /* check src1 operand */ + _(check_reg_arg(regs, insn->src_reg, 1)); + + /* check src2 operand */ + _(check_reg_arg(regs, insn->dst_reg, 1)); + + if ((opcode == BPF_MOD || opcode == BPF_DIV) && + BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { + verbose("div by zero\n"); + return -EINVAL; + } + + if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 && + regs[insn->dst_reg].type == FRAME_PTR && + BPF_SRC(insn->code) == BPF_K) + stack_relative = 1; + + /* check dest operand */ + _(check_reg_arg(regs, insn->dst_reg, 0)); + + if (stack_relative) { + regs[insn->dst_reg].type = PTR_TO_STACK; + regs[insn->dst_reg].imm = insn->imm; + } + } + + return 0; +} + +static int check_cond_jmp_op(struct verifier_env *env, + struct bpf_insn *insn, int *insn_idx) +{ + struct reg_state *regs = env->cur_state.regs; + struct verifier_state *other_branch; + u8 opcode = BPF_OP(insn->code); + + if (BPF_SRC(insn->code) == BPF_X) + /* check src1 operand */ + _(check_reg_arg(regs, insn->src_reg, 1)); + + /* check src2 operand */ + _(check_reg_arg(regs, insn->dst_reg, 1)); + + /* detect if R == 0 where R was initialized to zero earlier */ + if (BPF_SRC(insn->code) == BPF_K && + (opcode == BPF_JEQ || opcode == BPF_JNE) && + regs[insn->dst_reg].type == CONST_IMM && + regs[insn->dst_reg].imm == insn->imm) { + if (opcode == BPF_JEQ) { + /* if (imm == imm) goto pc+off; + * only follow the goto, ignore fall-through + */ + *insn_idx += insn->off; + return 0; + } else { + /* if (imm != imm) goto pc+off; + * only follow fall-through branch, since + * that's where the program will go + */ + return 0; + } + } + + other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx); + if (!other_branch) + return -EFAULT; + + /* detect if R == 0 where R is returned value from bpf_map_lookup_elem() */ + if (BPF_SRC(insn->code) == BPF_K && + insn->imm == 0 && (opcode == BPF_JEQ || + opcode == BPF_JNE) && + regs[insn->dst_reg].type == PTR_TO_MAP_OR_NULL) { + if (opcode == BPF_JEQ) { + /* next fallthrough insn can access memory via + * this register + */ + regs[insn->dst_reg].type = PTR_TO_MAP; + /* branch targer cannot access it, since reg == 0 */ + other_branch->regs[insn->dst_reg].type = CONST_IMM; + other_branch->regs[insn->dst_reg].imm = 0; + } else { + other_branch->regs[insn->dst_reg].type = PTR_TO_MAP; + regs[insn->dst_reg].type = CONST_IMM; + regs[insn->dst_reg].imm = 0; + } + } else if (BPF_SRC(insn->code) == BPF_K && + (opcode == BPF_JEQ || opcode == BPF_JNE)) { + + if (opcode == BPF_JEQ) { + /* detect if (R == imm) goto + * and in the target state recognize that R = imm + */ + other_branch->regs[insn->dst_reg].type = CONST_IMM; + other_branch->regs[insn->dst_reg].imm = insn->imm; + } else { + /* detect if (R != imm) goto + * and in the fall-through state recognize that R = imm + */ + regs[insn->dst_reg].type = CONST_IMM; + regs[insn->dst_reg].imm = insn->imm; + } + } + if (verbose_on) + pr_cont_verifier_state(env); + return 0; +} + +/* verify safety of LD_ABS|LD_IND instructions: + * - they can only appear in the programs where ctx == skb + * - since they are wrappers of function calls, they scratch R1-R5 registers, + * preserve R6-R9, and store return value into R0 + * + * Implicit input: + * ctx == skb == R6 == CTX + * + * Explicit input: + * SRC == any register + * IMM == 32-bit immediate + * + * Output: + * R0 - 8/16/32-bit skb data converted to cpu endianness + */ + +static int check_ld_abs(struct verifier_env *env, struct bpf_insn *insn) +{ + struct reg_state *regs = env->cur_state.regs; + u8 mode = BPF_MODE(insn->code); + struct reg_state *reg; + int i; + + if (mode != BPF_ABS && mode != BPF_IND) + return -EINVAL; + + if (env->prog->info->prog_type != BPF_PROG_TYPE_SOCKET_FILTER) { + verbose("BPF_LD_ABS|IND instructions are only allowed in socket filters\n"); + return -EINVAL; + } + + /* check whether implicit source operand (register R6) is readable */ + _(check_reg_arg(regs, BPF_REG_6, 1)); + + if (regs[BPF_REG_6].type != PTR_TO_CTX) { + verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); + return -EINVAL; + } + + if (mode == BPF_IND) + /* check explicit source operand */ + _(check_reg_arg(regs, insn->src_reg, 1)); + + /* reset caller saved regs to unreadable */ + for (i = 0; i < CALLER_SAVED_REGS; i++) { + reg = regs + caller_saved[i]; + reg->type = NOT_INIT; + reg->imm = 0; + } + + /* mark destination R0 register as readable, since it contains + * the value fetched from the packet + */ + regs[BPF_REG_0].type = UNKNOWN_VALUE; + return 0; +} + +/* non-recursive DFS pseudo code + * 1 procedure DFS-iterative(G,v): + * 2 label v as discovered + * 3 let S be a stack + * 4 S.push(v) + * 5 while S is not empty + * 6 t <- S.pop() + * 7 if t is what we're looking for: + * 8 return t + * 9 for all edges e in G.adjacentEdges(t) do + * 10 if edge e is already labelled + * 11 continue with the next edge + * 12 w <- G.adjacentVertex(t,e) + * 13 if vertex w is not discovered and not explored + * 14 label e as tree-edge + * 15 label w as discovered + * 16 S.push(w) + * 17 continue at 5 + * 18 else if vertex w is discovered + * 19 label e as back-edge + * 20 else + * 21 // vertex w is explored + * 22 label e as forward- or cross-edge + * 23 label t as explored + * 24 S.pop() + * + * convention: + * 1 - discovered + * 2 - discovered and 1st branch labelled + * 3 - discovered and 1st and 2nd branch labelled + * 4 - explored + */ + +#define STATE_END ((struct verifier_state_list *)-1) + +#define PUSH_INT(I) \ + do { \ + if (cur_stack >= insn_cnt) { \ + ret = -E2BIG; \ + goto free_st; \ + } \ + stack[cur_stack++] = I; \ + } while (0) + +#define PEEK_INT() \ + ({ \ + int _ret; \ + if (cur_stack == 0) \ + _ret = -1; \ + else \ + _ret = stack[cur_stack - 1]; \ + _ret; \ + }) + +#define POP_INT() \ + ({ \ + int _ret; \ + if (cur_stack == 0) \ + _ret = -1; \ + else \ + _ret = stack[--cur_stack]; \ + _ret; \ + }) + +#define PUSH_INSN(T, W, E) \ + do { \ + int w = W; \ + if (E == 1 && st[T] >= 2) \ + break; \ + if (E == 2 && st[T] >= 3) \ + break; \ + if (w >= insn_cnt) { \ + ret = -EACCES; \ + goto free_st; \ + } \ + if (E == 2) \ + /* mark branch target for state pruning */ \ + env->branch_landing[w] = STATE_END; \ + if (st[w] == 0) { \ + /* tree-edge */ \ + st[T] = 1 + E; \ + st[w] = 1; /* discovered */ \ + PUSH_INT(w); \ + goto peak_stack; \ + } else if (st[w] == 1 || st[w] == 2 || st[w] == 3) { \ + verbose("back-edge from insn %d to %d\n", t, w); \ + ret = -EINVAL; \ + goto free_st; \ + } else if (st[w] == 4) { \ + /* forward- or cross-edge */ \ + st[T] = 1 + E; \ + } else { \ + verbose("insn state internal bug\n"); \ + ret = -EFAULT; \ + goto free_st; \ + } \ + } while (0) + +/* non-recursive depth-first-search to detect loops in BPF program + * loop == back-edge in directed graph + */ +static int check_cfg(struct verifier_env *env) +{ + struct bpf_insn *insns = env->prog->insnsi; + int insn_cnt = env->prog->len; + int cur_stack = 0; + int *stack; + int ret = 0; + int *st; + int i, t; + + if (insns[insn_cnt - 1].code != (BPF_JMP | BPF_EXIT)) { + verbose("last insn is not a 'ret'\n"); + return -EINVAL; + } + + st = kzalloc(sizeof(int) * insn_cnt, GFP_KERNEL); + if (!st) + return -ENOMEM; + + stack = kzalloc(sizeof(int) * insn_cnt, GFP_KERNEL); + if (!stack) { + kfree(st); + return -ENOMEM; + } + + st[0] = 1; /* mark 1st insn as discovered */ + PUSH_INT(0); + +peak_stack: + while ((t = PEEK_INT()) != -1) { + if (insns[t].code == (BPF_JMP | BPF_EXIT)) + goto mark_explored; + + if (BPF_CLASS(insns[t].code) == BPF_JMP) { + u8 opcode = BPF_OP(insns[t].code); + + if (opcode == BPF_CALL) { + PUSH_INSN(t, t + 1, 1); + } else if (opcode == BPF_JA) { + if (BPF_SRC(insns[t].code) != BPF_X) { + ret = -EINVAL; + goto free_st; + } + PUSH_INSN(t, t + insns[t].off + 1, 1); + } else { + PUSH_INSN(t, t + 1, 1); + PUSH_INSN(t, t + insns[t].off + 1, 2); + } + /* tell verifier to check for equivalent verifier states + * after every call and jump + */ + env->branch_landing[t + 1] = STATE_END; + } else { + PUSH_INSN(t, t + 1, 1); + } + +mark_explored: + st[t] = 4; /* explored */ + if (POP_INT() == -1) { + verbose("pop_int internal bug\n"); + ret = -EFAULT; + goto free_st; + } + } + + + for (i = 0; i < insn_cnt; i++) { + if (st[i] != 4) { + verbose("unreachable insn %d\n", i); + ret = -EINVAL; + goto free_st; + } + } + +free_st: + kfree(st); + kfree(stack); + return ret; +} + +/* compare two verifier states + * + * all states stored in state_list are known to be valid, since + * verifier reached 'bpf_exit' instruction through them + * + * this function is called when verifier exploring different branches of + * execution popped from the state stack. If it sees an old state that has + * more strict register state and more strict stack state then this execution + * branch doesn't need to be explored further, since verifier already + * concluded that more strict state leads to valid finish. + * + * Therefore two states are equivalent if register state is more conservative + * and explored stack state is more conservative than the current one. + * Example: + * explored current + * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) + * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) + * + * In other words if current stack state (one being explored) has more + * valid slots than old one that already passed validation, it means + * the verifier can stop exploring and conclude that current state is valid too + * + * Similarly with registers. If explored state has register type as invalid + * whereas register type in current state is meaningful, it means that + * the current state will reach 'bpf_exit' instruction safely + */ +static bool states_equal(struct verifier_state *old, struct verifier_state *cur) +{ + int i; + + for (i = 0; i < MAX_BPF_REG; i++) { + if (memcmp(&old->regs[i], &cur->regs[i], + sizeof(old->regs[0])) != 0) { + if (old->regs[i].type == NOT_INIT || + old->regs[i].type == UNKNOWN_VALUE) + continue; + return false; + } + } + + for (i = 0; i < MAX_BPF_STACK; i++) { + if (memcmp(&old->stack[i], &cur->stack[i], + sizeof(old->stack[0])) != 0) { + if (old->stack[i].stype == STACK_INVALID) + continue; + return false; + } + } + return true; +} + +static int is_state_visited(struct verifier_env *env, int insn_idx) +{ + struct verifier_state_list *new_sl; + struct verifier_state_list *sl; + + sl = env->branch_landing[insn_idx]; + if (!sl) + /* no branch jump to this insn, ignore it */ + return 0; + + while (sl != STATE_END) { + if (states_equal(&sl->state, &env->cur_state)) + /* reached equivalent register/stack state, + * prune the search + */ + return 1; + sl = sl->next; + } + new_sl = kmalloc(sizeof(struct verifier_state_list), GFP_KERNEL); + + if (!new_sl) + /* ignore ENOMEM, it doesn't affect correctness */ + return 0; + + /* add new state to the head of linked list */ + memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state)); + new_sl->next = env->branch_landing[insn_idx]; + env->branch_landing[insn_idx] = new_sl; + return 0; +} + +static int do_check(struct verifier_env *env) +{ + struct verifier_state *state = &env->cur_state; + struct bpf_insn *insns = env->prog->insnsi; + struct reg_state *regs = state->regs; + int insn_cnt = env->prog->len; + int insn_idx, prev_insn_idx = 0; + int insn_processed = 0; + bool do_print_state = false; + + init_reg_state(regs); + insn_idx = 0; + for (;;) { + struct bpf_insn *insn; + u8 class; + + if (insn_idx >= insn_cnt) { + verbose("invalid insn idx %d insn_cnt %d\n", + insn_idx, insn_cnt); + return -EFAULT; + } + + insn = &insns[insn_idx]; + class = BPF_CLASS(insn->code); + + if (++insn_processed > 32768) { + verbose("BPF program is too large. Proccessed %d insn\n", + insn_processed); + return -E2BIG; + } + + if (is_state_visited(env, insn_idx)) { + if (verbose_on) { + if (do_print_state) + pr_cont("\nfrom %d to %d: safe\n", + prev_insn_idx, insn_idx); + else + pr_cont("%d: safe\n", insn_idx); + } + goto process_bpf_exit; + } + + if (verbose_on && do_print_state) { + pr_cont("\nfrom %d to %d:", prev_insn_idx, insn_idx); + pr_cont_verifier_state(env); + do_print_state = false; + } + + if (verbose_on) { + pr_cont("%d: ", insn_idx); + pr_cont_bpf_insn(insn); + } + + if (class == BPF_ALU || class == BPF_ALU64) { + _(check_alu_op(regs, insn)); + + } else if (class == BPF_LDX) { + if (BPF_MODE(insn->code) != BPF_MEM) + return -EINVAL; + + /* check src operand */ + _(check_reg_arg(regs, insn->src_reg, 1)); + + _(check_mem_access(env, insn->src_reg, insn->off, + BPF_SIZE(insn->code), BPF_READ, + insn->dst_reg)); + + /* dest reg state will be updated by mem_access */ + + } else if (class == BPF_STX) { + /* check src1 operand */ + _(check_reg_arg(regs, insn->src_reg, 1)); + /* check src2 operand */ + _(check_reg_arg(regs, insn->dst_reg, 1)); + _(check_mem_access(env, insn->dst_reg, insn->off, + BPF_SIZE(insn->code), BPF_WRITE, + insn->src_reg)); + + } else if (class == BPF_ST) { + if (BPF_MODE(insn->code) != BPF_MEM) + return -EINVAL; + /* check src operand */ + _(check_reg_arg(regs, insn->dst_reg, 1)); + _(check_mem_access(env, insn->dst_reg, insn->off, + BPF_SIZE(insn->code), BPF_WRITE, + -1)); + + } else if (class == BPF_JMP) { + u8 opcode = BPF_OP(insn->code); + + if (opcode == BPF_CALL) { + _(check_call(env, insn->imm)); + } else if (opcode == BPF_JA) { + if (BPF_SRC(insn->code) != BPF_X) + return -EINVAL; + insn_idx += insn->off + 1; + continue; + } else if (opcode == BPF_EXIT) { + /* eBPF calling convetion is such that R0 is used + * to return the value from eBPF program. + * Make sure that it's readable at this time + * of bpf_exit, which means that program wrote + * something into it earlier + */ + _(check_reg_arg(regs, BPF_REG_0, 1)); +process_bpf_exit: + insn_idx = pop_stack(env, &prev_insn_idx); + if (insn_idx < 0) { + break; + } else { + do_print_state = true; + continue; + } + } else { + _(check_cond_jmp_op(env, insn, &insn_idx)); + } + } else if (class == BPF_LD) { + _(check_ld_abs(env, insn)); + } else { + verbose("unknown insn class %d\n", class); + return -EINVAL; + } + + insn_idx++; + } + + return 0; +} + +static void free_states(struct verifier_env *env, int insn_cnt) +{ + struct verifier_state_list *sl, *sln; + int i; + + for (i = 0; i < insn_cnt; i++) { + sl = env->branch_landing[i]; + + if (sl) + while (sl != STATE_END) { + sln = sl->next; + kfree(sl); + sl = sln; + } + } + + kfree(env->branch_landing); +} + +int bpf_check(struct sk_filter *prog) +{ + struct verifier_env *env; + int ret; + + if (prog->len <= 0 || prog->len > BPF_MAXINSNS) + return -E2BIG; + + env = kzalloc(sizeof(struct verifier_env), GFP_KERNEL); + if (!env) + return -ENOMEM; + + verbose_on = false; +retry: + env->prog = prog; + env->branch_landing = kcalloc(prog->len, + sizeof(struct verifier_state_list *), + GFP_KERNEL); + + if (!env->branch_landing) { + kfree(env); + return -ENOMEM; + } + + ret = check_cfg(env); + if (ret < 0) + goto free_env; + + ret = do_check(env); + +free_env: + while (pop_stack(env, NULL) >= 0); + free_states(env, prog->len); + + if (ret < 0 && !verbose_on && capable(CAP_SYS_ADMIN)) { + /* verification failed, redo it with verbose on */ + memset(env, 0, sizeof(struct verifier_env)); + verbose_on = true; + goto retry; + } + + if (ret == 0 && env->used_map_cnt) { + /* if program passed verifier, update used_maps in bpf_prog_info */ + prog->info->used_maps = kmalloc_array(env->used_map_cnt, + sizeof(u32), GFP_KERNEL); + if (!prog->info->used_maps) { + kfree(env); + return -ENOMEM; + } + memcpy(prog->info->used_maps, env->used_maps, + sizeof(u32) * env->used_map_cnt); + prog->info->used_map_cnt = env->used_map_cnt; + } + + kfree(env); + return ret; +} -- 1.7.9.5 -- To unsubscribe from this list: send the line "unsubscribe linux-api" in the body of a message to majordomo@xxxxxxxxxxxxxxx More majordomo info at http://vger.kernel.org/majordomo-info.html