On Tue, 1 Dec 2020 at 04:04, Barry Song <song.bao.hua@xxxxxxxxxxxxx> wrote: > > ARM64 server chip Kunpeng 920 has 6 clusters in each NUMA node, and each > cluster has 4 cpus. All clusters share L3 cache data, but each cluster > has local L3 tag. On the other hand, each clusters will share some > internal system bus. This means cache coherence overhead inside one cluster > is much less than the overhead across clusters. > > +-----------------------------------+ +---------+ > | +------+ +------+ +---------------------------+ | > | | CPU0 | | cpu1 | | +-----------+ | | > | +------+ +------+ | | | | | > | +----+ L3 | | | > | +------+ +------+ cluster | | tag | | | > | | CPU2 | | CPU3 | | | | | | > | +------+ +------+ | +-----------+ | | > | | | | > +-----------------------------------+ | | > +-----------------------------------+ | | > | +------+ +------+ +--------------------------+ | > | | | | | | +-----------+ | | > | +------+ +------+ | | | | | > | | | L3 | | | > | +------+ +------+ +----+ tag | | | > | | | | | | | | | | > | +------+ +------+ | +-----------+ | | > | | | | > +-----------------------------------+ | L3 | > | data | > +-----------------------------------+ | | > | +------+ +------+ | +-----------+ | | > | | | | | | | | | | > | +------+ +------+ +----+ L3 | | | > | | | tag | | | > | +------+ +------+ | | | | | > | | | | | ++ +-----------+ | | > | +------+ +------+ |---------------------------+ | > +-----------------------------------| | | > +-----------------------------------| | | > | +------+ +------+ +---------------------------+ | > | | | | | | +-----------+ | | > | +------+ +------+ | | | | | > | +----+ L3 | | | > | +------+ +------+ | | tag | | | > | | | | | | | | | | > | +------+ +------+ | +-----------+ | | > | | | | > +-----------------------------------+ | | > +-----------------------------------+ | | > | +------+ +------+ +--------------------------+ | > | | | | | | +-----------+ | | > | +------+ +------+ | | | | | > | | | L3 | | | > | +------+ +------+ +---+ tag | | | > | | | | | | | | | | > | +------+ +------+ | +-----------+ | | > | | | | > +-----------------------------------+ | | > +-----------------------------------+ ++ | > | +------+ +------+ +--------------------------+ | > | | | | | | +-----------+ | | > | +------+ +------+ | | | | | > | | | L3 | | | > | +------+ +------+ +--+ tag | | | > | | | | | | | | | | > | +------+ +------+ | +-----------+ | | > | | +---------+ > +-----------------------------------+ > > This patch adds the sched_domain for clusters. On kunpeng 920, without > this patch, domain0 of cpu0 would be MC for cpu0-cpu23 with > min_interval=24, max_interval=48; with this patch, MC becomes domain1, > a new domain0 "CL" including cpu0-cpu3 is added with min_interval=4 and > max_interval=8. > This will affect load balance. For example, without this patch, while cpu0 > becomes idle, it will pull a task from cpu1-cpu15. With this patch, cpu0 > will try to pull a task from cpu1-cpu3 first. This will have much less > overhead of task migration. > > On the other hand, while doing WAKE_AFFINE, this patch will try to find > a core in the target cluster before scanning the llc domain. > This means it will proactively use a core which has better affinity with > target core at first. Which is at the opposite of what we are usually trying to do in the fast wakeup path: trying to minimize resource sharing by finding an idle core with all smt idle as an example > > Not much benchmark has been done yet. but here is a rough hackbench > result. > we run the below command with different -g parameter to increase system load > by changing g from 1 to 4, for each one of 1-4, we run the benchmark ten times > and record the data to get the average time: > > First, we run hackbench in only one NUMA node(cpu0-cpu23): > $ numactl -N 0 hackbench -p -T -l 100000 -g $1 What is your ref tree ? v5.10-rcX or tip/sched/core ? > > g=1 (seen cpu utilization around 50% for each core) > Running in threaded mode with 1 groups using 40 file descriptors > Each sender will pass 100000 messages of 100 bytes > w/o: 7.689 7.485 7.485 7.458 7.524 7.539 7.738 7.693 7.568 7.674=7.5853 > w/ : 7.516 7.941 7.374 7.963 7.881 7.910 7.420 7.556 7.695 7.441=7.6697 > performance improvement w/ patch: -1.01% > > g=2 (seen cpu utilization around 70% for each core) > Running in threaded mode with 2 groups using 40 file descriptors > Each sender will pass 100000 messages of 100 bytes > w/o: 10.127 10.119 10.070 10.196 10.057 10.111 10.045 10.164 10.162 9.955=10.1006 > w/ : 9.694 9.654 9.612 9.649 9.686 9.734 9.607 9.842 9.690 9.710=9.6878 > performance improvement w/ patch: 4.08% > > g=3 (seen cpu utilization around 90% for each core) > Running in threaded mode with 3 groups using 40 file descriptors > Each sender will pass 100000 messages of 100 bytes > w/o: 15.885 15.254 15.932 15.647 16.120 15.878 15.857 15.759 15.674 15.721=15.7727 > w/ : 14.974 14.657 13.969 14.985 14.728 15.665 15.191 14.995 14.946 14.895=14.9005 > performance improvement w/ patch: 5.53% > > g=4 > Running in threaded mode with 4 groups using 40 file descriptors > Each sender will pass 100000 messages of 100 bytes > w/o: 20.014 21.025 21.119 21.235 19.767 20.971 20.962 20.914 21.090 21.090=20.8187 > w/ : 20.331 20.608 20.338 20.445 20.456 20.146 20.693 20.797 21.381 20.452=20.5647 > performance improvement w/ patch: 1.22% > > After that, we run the same hackbench in both NUMA nodes(cpu0-cpu47): > g=1 > w/o: 7.351 7.416 7.486 7.358 7.516 7.403 7.413 7.411 7.421 7.454=7.4229 > w/ : 7.609 7.596 7.647 7.571 7.687 7.571 7.520 7.513 7.530 7.681=7.5925 > performance improvement by patch: -2.2% > > g=2 > w/o: 9.046 9.190 9.053 8.950 9.101 8.930 9.143 8.928 8.905 9.034=9.028 > w/ : 8.247 8.057 8.258 8.310 8.083 8.201 8.044 8.158 8.382 8.173=8.1913 > performance improvement by patch: 9.3% > > g=3 > w/o: 11.664 11.767 11.277 11.619 12.557 12.760 11.664 12.165 12.235 11.849=11.9557 > w/ : 9.387 9.461 9.650 9.613 9.591 9.454 9.496 9.716 9.327 9.722=9.5417 > performance improvement by patch: 20.2% > > g=4 > w/o: 17.347 17.299 17.655 18.775 16.707 18.879 17.255 18.356 16.859 18.515=17.7647 > w/ : 10.416 10.496 10.601 10.318 10.459 10.617 10.510 10.642 10.467 10.401=10.4927 > performance improvement by patch: 40.9% > > g=5 > w/o: 27.805 26.633 24.138 28.086 24.405 27.922 30.043 28.458 31.073 25.819=27.4382 > w/ : 13.817 13.976 14.166 13.688 14.132 14.095 14.003 13.997 13.954 13.907=13.9735 > performance improvement by patch: 49.1% > > It seems the patch can bring a huge increase on hackbench especially when > we bind hackbench to all of cpu0-cpu47, comparing to 5.53% while running > on single NUMA node(cpu0-cpu23) Interesting that this patch mainly impacts the numa case > > Signed-off-by: Barry Song <song.bao.hua@xxxxxxxxxxxxx> > --- > arch/arm64/Kconfig | 7 +++++++ > arch/arm64/kernel/smp.c | 17 +++++++++++++++++ > include/linux/topology.h | 7 +++++++ > kernel/sched/fair.c | 35 +++++++++++++++++++++++++++++++++++ > 4 files changed, 66 insertions(+) > > diff --git a/arch/arm64/Kconfig b/arch/arm64/Kconfig > index 6d23283..3583c26 100644 > --- a/arch/arm64/Kconfig > +++ b/arch/arm64/Kconfig > @@ -938,6 +938,13 @@ config SCHED_MC > making when dealing with multi-core CPU chips at a cost of slightly > increased overhead in some places. If unsure say N here. > > +config SCHED_CLUSTER > + bool "Cluster scheduler support" > + help > + Cluster scheduler support improves the CPU scheduler's decision > + making when dealing with machines that have clusters(sharing internal > + bus or sharing LLC cache tag). If unsure say N here. > + > config SCHED_SMT > bool "SMT scheduler support" > help > diff --git a/arch/arm64/kernel/smp.c b/arch/arm64/kernel/smp.c > index 355ee9e..5c8f026 100644 > --- a/arch/arm64/kernel/smp.c > +++ b/arch/arm64/kernel/smp.c > @@ -32,6 +32,7 @@ > #include <linux/irq_work.h> > #include <linux/kexec.h> > #include <linux/kvm_host.h> > +#include <linux/sched/topology.h> > > #include <asm/alternative.h> > #include <asm/atomic.h> > @@ -726,6 +727,20 @@ void __init smp_init_cpus(void) > } > } > > +static struct sched_domain_topology_level arm64_topology[] = { > +#ifdef CONFIG_SCHED_SMT > + { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, > +#endif > +#ifdef CONFIG_SCHED_CLUSTER > + { cpu_clustergroup_mask, cpu_core_flags, SD_INIT_NAME(CL) }, > +#endif > +#ifdef CONFIG_SCHED_MC > + { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, > +#endif > + { cpu_cpu_mask, SD_INIT_NAME(DIE) }, > + { NULL, }, > +}; > + > void __init smp_prepare_cpus(unsigned int max_cpus) > { > const struct cpu_operations *ops; > @@ -735,6 +750,8 @@ void __init smp_prepare_cpus(unsigned int max_cpus) > > init_cpu_topology(); > > + set_sched_topology(arm64_topology); > + > this_cpu = smp_processor_id(); > store_cpu_topology(this_cpu); > numa_store_cpu_info(this_cpu); > diff --git a/include/linux/topology.h b/include/linux/topology.h > index 5f66648..2c823c0 100644 > --- a/include/linux/topology.h > +++ b/include/linux/topology.h > @@ -211,6 +211,13 @@ static inline const struct cpumask *cpu_smt_mask(int cpu) > } > #endif > > +#ifdef CONFIG_SCHED_CLUSTER > +static inline const struct cpumask *cpu_cluster_mask(int cpu) > +{ > + return topology_cluster_cpumask(cpu); > +} > +#endif > + > static inline const struct cpumask *cpu_cpu_mask(int cpu) > { > return cpumask_of_node(cpu_to_node(cpu)); > diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c > index 1a68a05..ae8ec910 100644 > --- a/kernel/sched/fair.c > +++ b/kernel/sched/fair.c > @@ -6106,6 +6106,37 @@ static inline int select_idle_smt(struct task_struct *p, int target) > > #endif /* CONFIG_SCHED_SMT */ > > +#ifdef CONFIG_SCHED_CLUSTER > +/* > + * Scan the local CLUSTER mask for idle CPUs. > + */ > +static int select_idle_cluster(struct task_struct *p, int target) > +{ > + int cpu; > + > + /* right now, no hardware with both cluster and smt to run */ > + if (sched_smt_active()) don't use smt static key but a dedicated one if needed > + return -1; > + > + for_each_cpu_wrap(cpu, cpu_cluster_mask(target), target) { > + if (!cpumask_test_cpu(cpu, p->cpus_ptr)) > + continue; > + if (available_idle_cpu(cpu)) > + return cpu; > + } > + > + return -1; > +} > + > +#else /* CONFIG_SCHED_CLUSTER */ > + > +static inline int select_idle_cluster(struct task_struct *p, int target) > +{ > + return -1; > +} > + > +#endif /* CONFIG_SCHED_CLUSTER */ > + > /* > * Scan the LLC domain for idle CPUs; this is dynamically regulated by > * comparing the average scan cost (tracked in sd->avg_scan_cost) against the > @@ -6270,6 +6301,10 @@ static int select_idle_sibling(struct task_struct *p, int prev, int target) > if ((unsigned)i < nr_cpumask_bits) > return i; > > + i = select_idle_cluster(p, target); > + if ((unsigned)i < nr_cpumask_bits) > + return i; This is yet another loop in the fast wake up path. I'm curious to know which part of this patch really gives the perf improvement ? -Is it the new sched domain level with a shorter interval that is then used by Load balance to better spread task in the cluster and between clusters ? -Or this new loop in the wake up path which tries to keep threads in the same cluster ? which is at the opposite of the rest of the scheduler which tries to spread Also could the sched_feat(SIS_PROP) impacts significantly your topology because it breaks before looking for all cores in the LLC ? And this new loop extends the number of tested core ? > + > i = select_idle_cpu(p, sd, target); > if ((unsigned)i < nr_cpumask_bits) > return i; > -- > 2.7.4 >