* Huang Ying (ying.huang@xxxxxxxxx) wrote: > This version of the gen_pool memory allocator supports lockless > operation. > > This makes it safe to use in NMI handlers and other special > unblockable contexts that could otherwise deadlock on locks. This is > implemented by using atomic operations and retries on any conflicts. > The disadvantage is that there may be livelocks in extreme cases. For > better scalability, one gen_pool allocator can be used for each CPU. > > The lockless operation only works if there is enough memory available. > If new memory is added to the pool a lock has to be still taken. So > any user relying on locklessness has to ensure that sufficient memory > is preallocated. > > The basic atomic operation of this allocator is cmpxchg on long. On > architectures that don't have NMI-safe cmpxchg implementation, the > allocator can NOT be used in NMI handler. So code uses the allocator > in NMI handler should depend on CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG. > > Signed-off-by: Huang Ying <ying.huang@xxxxxxxxx> > Reviewed-by: Andi Kleen <ak@xxxxxxxxxxxxxxx> > Cc: Mathieu Desnoyers <mathieu.desnoyers@xxxxxxxxxxxx> > Cc: Andrew Morton <akpm@xxxxxxxxxxxxxxxxxxxx> > --- > include/linux/bitmap.h | 1 > include/linux/genalloc.h | 46 +++++++- > lib/bitmap.c | 2 > lib/genalloc.c | 256 ++++++++++++++++++++++++++++++++++++++--------- > 4 files changed, 250 insertions(+), 55 deletions(-) > > --- a/include/linux/bitmap.h > +++ b/include/linux/bitmap.h > @@ -142,6 +142,7 @@ extern void bitmap_release_region(unsign > extern int bitmap_allocate_region(unsigned long *bitmap, int pos, int order); > extern void bitmap_copy_le(void *dst, const unsigned long *src, int nbits); > > +#define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) % BITS_PER_LONG)) > #define BITMAP_LAST_WORD_MASK(nbits) \ > ( \ > ((nbits) % BITS_PER_LONG) ? \ > --- a/include/linux/genalloc.h > +++ b/include/linux/genalloc.h > @@ -1,8 +1,28 @@ > +#ifndef GENALLOC_H > +#define GENALLOC_H > /* > - * Basic general purpose allocator for managing special purpose memory > - * not managed by the regular kmalloc/kfree interface. > - * Uses for this includes on-device special memory, uncached memory > - * etc. > + * Basic general purpose allocator for managing special purpose > + * memory, for example, memory that is not managed by the regular > + * kmalloc/kfree interface. Uses for this includes on-device special > + * memory, uncached memory etc. > + * > + * It is safe to use the allocator in NMI handlers and other special > + * unblockable contexts that could otherwise deadlock on locks. This > + * is implemented by using atomic operations and retries on any > + * conflicts. The disadvantage is that there may be livelocks in > + * extreme cases. For better scalability, one allocator can be used > + * for each CPU. > + * > + * The lockless operation only works if there is enough memory > + * available. If new memory is added to the pool a lock has to be > + * still taken. So any user relying on locklessness has to ensure > + * that sufficient memory is preallocated. > + * > + * The basic atomic operation of this allocator is cmpxchg on long. > + * On architectures that don't have NMI-safe cmpxchg implementation, > + * the allocator can NOT be used in NMI handler. So code uses the > + * allocator in NMI handler should depend on > + * CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG. > * > * This source code is licensed under the GNU General Public License, > * Version 2. See the file COPYING for more details. > @@ -13,7 +33,7 @@ > * General purpose special memory pool descriptor. > */ > struct gen_pool { > - rwlock_t lock; > + spinlock_t lock; > struct list_head chunks; /* list of chunks in this pool */ > int min_alloc_order; /* minimum allocation order */ > }; > @@ -22,15 +42,29 @@ struct gen_pool { > * General purpose special memory pool chunk descriptor. > */ > struct gen_pool_chunk { > - spinlock_t lock; > struct list_head next_chunk; /* next chunk in pool */ > + atomic_t avail; > unsigned long start_addr; /* starting address of memory chunk */ > unsigned long end_addr; /* ending address of memory chunk */ > unsigned long bits[0]; /* bitmap for allocating memory chunk */ > }; > > +/** > + * gen_pool_for_each_chunk - iterate over chunks of generic memory pool > + * @chunk: the struct gen_pool_chunk * to use as a loop cursor > + * @pool: the generic memory pool > + * > + * Not lockless, proper mutual exclusion is needed to use this macro > + * with other gen_pool function simultaneously. > + */ > +#define gen_pool_for_each_chunk(chunk, pool) \ > + list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk) > + > extern struct gen_pool *gen_pool_create(int, int); > extern int gen_pool_add(struct gen_pool *, unsigned long, size_t, int); > extern void gen_pool_destroy(struct gen_pool *); > extern unsigned long gen_pool_alloc(struct gen_pool *, size_t); > extern void gen_pool_free(struct gen_pool *, unsigned long, size_t); > +extern size_t gen_pool_avail(struct gen_pool *); > +extern size_t gen_pool_size(struct gen_pool *); > +#endif /* GENALLOC_H */ > --- a/lib/bitmap.c > +++ b/lib/bitmap.c > @@ -271,8 +271,6 @@ int __bitmap_weight(const unsigned long > } > EXPORT_SYMBOL(__bitmap_weight); > > -#define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) % BITS_PER_LONG)) > - > void bitmap_set(unsigned long *map, int start, int nr) > { > unsigned long *p = map + BIT_WORD(start); > --- a/lib/genalloc.c > +++ b/lib/genalloc.c > @@ -1,8 +1,33 @@ > /* > - * Basic general purpose allocator for managing special purpose memory > - * not managed by the regular kmalloc/kfree interface. > - * Uses for this includes on-device special memory, uncached memory > - * etc. > + * Basic general purpose allocator for managing special purpose > + * memory, for example, memory that is not managed by the regular > + * kmalloc/kfree interface. Uses for this includes on-device special > + * memory, uncached memory etc. > + * > + * It is safe to use the allocator in NMI handlers and other special > + * unblockable contexts that could otherwise deadlock on locks. This > + * is implemented by using atomic operations and retries on any > + * conflicts. The disadvantage is that there may be livelocks in > + * extreme cases. For better scalability, one allocator can be used > + * for each CPU. > + * > + * The lockless operation only works if there is enough memory > + * available. If new memory is added to the pool a lock has to be > + * still taken. So any user relying on locklessness has to ensure > + * that sufficient memory is preallocated. > + * > + * The basic atomic operation of this allocator is cmpxchg on long. > + * On architectures that don't have NMI-safe cmpxchg implementation, > + * the allocator can NOT be used in NMI handler. So code uses the > + * allocator in NMI handler should depend on > + * CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG. > + * > + * rcu_read_lock and rcu_read_unlock is not used int gen_pool_alloc, > + * gen_pool_free, gen_pool_avail and gen_pool_size etc, because chunks > + * are only added into pool, not deleted from pool unless the pool > + * itself is destroyed. If chunk will be deleted from pool, > + * rcu_read_lock and rcu_read_unlock should be uses in these > + * functions. > * > * Copyright 2005 (C) Jes Sorensen <jes@xxxxxxxxxxxxxxxxxx> > * > @@ -13,8 +38,109 @@ > #include <linux/slab.h> > #include <linux/module.h> > #include <linux/bitmap.h> > +#include <linux/rculist.h> > +#include <linux/interrupt.h> > #include <linux/genalloc.h> > > +static int set_bits_ll(unsigned long *addr, unsigned long mask_to_set) > +{ > + unsigned long val, nval; > + > + nval = *addr; > + do { > + val = nval; > + if (val & mask_to_set) > + return -EBUSY; > + cpu_relax(); > + } while ((nval = cmpxchg(addr, val, val | mask_to_set)) != val); Some architectures have their own atomic set bit already (e.g. intel), you should probably extend the existing set "bit" to a set "bits" instead, and use that instead for those, and put the generic implementation in asm-generic. > + > + return 0; > +} > + > +static int clear_bits_ll(unsigned long *addr, unsigned long mask_to_clear) > +{ > + unsigned long val, nval; > + > + nval = *addr; > + do { > + val = nval; > + if ((val & mask_to_clear) != mask_to_clear) > + return -EBUSY; > + cpu_relax(); > + } while ((nval = cmpxchg(addr, val, val & ~mask_to_clear)) != val); Same as above. > + > + return 0; > +} > + > +/* > + * bitmap_set_ll - set the specified number of bits at the specified position > + * @map: pointer to a bitmap > + * @start: a bit position in @map > + * @nr: number of bits to set > + * > + * Set @nr bits start from @start in @map lock-lessly. Several users > + * can set/clear the same bitmap simultaneously without lock. If two > + * users set the same bit, one user will return remain bits, otherwise > + * return 0. > + */ > +static int bitmap_set_ll(unsigned long *map, int start, int nr) > +{ > + unsigned long *p = map + BIT_WORD(start); > + const int size = start + nr; > + int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG); > + unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start); Ah :) I've had some fun working on bitfield management headers. First question: how did you test this code ? Shift of "32" being turned to a no-op on Intel is an example of how some odd cases can creep into this kind of code. If you are interested, you might want to have a look at my portable bitfield read/write MIT-licensed header in the Babeltrace library, file include/babeltrace/bitfield.h (http://git.efficios.com/?p=babeltrace.git). It's not using atomic read/writes, but supports bitfield read/write event across different endiannesses. I made a testing program for it by providing limit values and random value, and checking that what is read/written matches. That helped me find interesting corner-cases. > + > + while (nr - bits_to_set >= 0) { > + if (set_bits_ll(p, mask_to_set)) > + return nr; > + nr -= bits_to_set; > + bits_to_set = BITS_PER_LONG; > + mask_to_set = ~0UL; > + p++; > + } > + if (nr) { > + mask_to_set &= BITMAP_LAST_WORD_MASK(size); > + if (set_bits_ll(p, mask_to_set)) > + return nr; > + } > + > + return 0; > +} > + > +/* > + * bitmap_clear_ll - clear the specified number of bits at the specified position > + * @map: pointer to a bitmap > + * @start: a bit position in @map > + * @nr: number of bits to set > + * > + * Clear @nr bits start from @start in @map lock-lessly. Several users > + * can set/clear the same bitmap simultaneously without lock. If two > + * users clear the same bit, one user will return remain bits, > + * otherwise return 0. > + */ > +static int bitmap_clear_ll(unsigned long *map, int start, int nr) > +{ > + unsigned long *p = map + BIT_WORD(start); > + const int size = start + nr; > + int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG); > + unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start); > + > + while (nr - bits_to_clear >= 0) { > + if (clear_bits_ll(p, mask_to_clear)) > + return nr; > + nr -= bits_to_clear; > + bits_to_clear = BITS_PER_LONG; > + mask_to_clear = ~0UL; > + p++; > + } > + if (nr) { > + mask_to_clear &= BITMAP_LAST_WORD_MASK(size); > + if (clear_bits_ll(p, mask_to_clear)) > + return nr; > + } > + > + return 0; > +} > > /** > * gen_pool_create - create a new special memory pool > @@ -30,7 +156,7 @@ struct gen_pool *gen_pool_create(int min > > pool = kmalloc_node(sizeof(struct gen_pool), GFP_KERNEL, nid); > if (pool != NULL) { > - rwlock_init(&pool->lock); > + spin_lock_init(&pool->lock); > INIT_LIST_HEAD(&pool->chunks); > pool->min_alloc_order = min_alloc_order; > } > @@ -58,15 +184,15 @@ int gen_pool_add(struct gen_pool *pool, > > chunk = kmalloc_node(nbytes, GFP_KERNEL | __GFP_ZERO, nid); > if (unlikely(chunk == NULL)) > - return -1; > + return -ENOMEM; > > - spin_lock_init(&chunk->lock); > chunk->start_addr = addr; > chunk->end_addr = addr + size; > + atomic_set(&chunk->avail, size); > > - write_lock(&pool->lock); > - list_add(&chunk->next_chunk, &pool->chunks); > - write_unlock(&pool->lock); > + spin_lock(&pool->lock); > + list_add_rcu(&chunk->next_chunk, &pool->chunks); hrm, where is the list_del_rcu ? Is there anywhere where we have some call_rcu scheme or synchronize_rcu to handle chunk teardown ? > + spin_unlock(&pool->lock); > > return 0; > } > @@ -86,7 +212,6 @@ void gen_pool_destroy(struct gen_pool *p > int order = pool->min_alloc_order; > int bit, end_bit; > > - > list_for_each_safe(_chunk, _next_chunk, &pool->chunks) { > chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk); > list_del(&chunk->next_chunk); > @@ -108,43 +233,47 @@ EXPORT_SYMBOL(gen_pool_destroy); > * @size: number of bytes to allocate from the pool > * > * Allocate the requested number of bytes from the specified pool. > - * Uses a first-fit algorithm. > + * Uses a first-fit algorithm. Can not be used in NMI handler on > + * architectures without NMI-safe cmpxchg implementation. > */ > unsigned long gen_pool_alloc(struct gen_pool *pool, size_t size) > { > - struct list_head *_chunk; > struct gen_pool_chunk *chunk; > - unsigned long addr, flags; > + unsigned long addr; > int order = pool->min_alloc_order; > - int nbits, start_bit, end_bit; > + int nbits, start_bit = 0, end_bit, remain; > + > +#ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG > + BUG_ON(in_nmi()); > +#endif > > if (size == 0) > return 0; > > nbits = (size + (1UL << order) - 1) >> order; > - > - read_lock(&pool->lock); > - list_for_each(_chunk, &pool->chunks) { > - chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk); missing rcu_read_lock() ? > + list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) { > + if (size > atomic_read(&chunk->avail)) > + continue; > > end_bit = (chunk->end_addr - chunk->start_addr) >> order; > - > - spin_lock_irqsave(&chunk->lock, flags); > - start_bit = bitmap_find_next_zero_area(chunk->bits, end_bit, 0, > - nbits, 0); > - if (start_bit >= end_bit) { > - spin_unlock_irqrestore(&chunk->lock, flags); > +retry: > + start_bit = bitmap_find_next_zero_area(chunk->bits, end_bit, > + start_bit, nbits, 0); > + if (start_bit >= end_bit) > continue; > + remain = bitmap_set_ll(chunk->bits, start_bit, nbits); > + if (remain) { > + remain = bitmap_clear_ll(chunk->bits, start_bit, > + nbits - remain); > + BUG_ON(remain); maybe add cpu_relax() ? This is a busy loop after all. > + goto retry; > } > > addr = chunk->start_addr + ((unsigned long)start_bit << order); > - > - bitmap_set(chunk->bits, start_bit, nbits); > - spin_unlock_irqrestore(&chunk->lock, flags); > - read_unlock(&pool->lock); > + size = nbits << order; > + atomic_sub(size, &chunk->avail); > return addr; > } > - read_unlock(&pool->lock); > return 0; > } > EXPORT_SYMBOL(gen_pool_alloc); > @@ -155,33 +284,66 @@ EXPORT_SYMBOL(gen_pool_alloc); > * @addr: starting address of memory to free back to pool > * @size: size in bytes of memory to free > * > - * Free previously allocated special memory back to the specified pool. > + * Free previously allocated special memory back to the specified > + * pool. Can not be used in NMI handler on architectures without > + * NMI-safe cmpxchg implementation. > */ > void gen_pool_free(struct gen_pool *pool, unsigned long addr, size_t size) > { > - struct list_head *_chunk; > struct gen_pool_chunk *chunk; > - unsigned long flags; > int order = pool->min_alloc_order; > - int bit, nbits; > - > - nbits = (size + (1UL << order) - 1) >> order; > + int start_bit, nbits, remain; > > - read_lock(&pool->lock); > - list_for_each(_chunk, &pool->chunks) { > - chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk); > +#ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG > + BUG_ON(in_nmi()); > +#endif > > + nbits = (size + (1UL << order) - 1) >> order; missing rcu_read_lock ? > + list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) { > if (addr >= chunk->start_addr && addr < chunk->end_addr) { > BUG_ON(addr + size > chunk->end_addr); > - spin_lock_irqsave(&chunk->lock, flags); > - bit = (addr - chunk->start_addr) >> order; > - while (nbits--) > - __clear_bit(bit++, chunk->bits); > - spin_unlock_irqrestore(&chunk->lock, flags); > - break; > + start_bit = (addr - chunk->start_addr) >> order; > + remain = bitmap_clear_ll(chunk->bits, start_bit, nbits); > + BUG_ON(remain); > + size = nbits << order; > + atomic_add(size, &chunk->avail); > + return; > } > } > - BUG_ON(nbits > 0); > - read_unlock(&pool->lock); > + BUG(); > } > EXPORT_SYMBOL(gen_pool_free); > + > +/** > + * gen_pool_avail - get available free space of the pool > + * @pool: pool to get available free space > + * > + * Return available free space of the specified pool. > + */ > +size_t gen_pool_avail(struct gen_pool *pool) > +{ > + struct gen_pool_chunk *chunk; > + size_t avail = 0; > + rcu_read_lock ? > + list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) > + avail += atomic_read(&chunk->avail); > + return avail; > +} > +EXPORT_SYMBOL_GPL(gen_pool_avail); > + > +/** > + * gen_pool_size - get size in bytes of memory managed by the pool > + * @pool: pool to get size > + * > + * Return size in bytes of memory managed by the pool. > + */ > +size_t gen_pool_size(struct gen_pool *pool) > +{ > + struct gen_pool_chunk *chunk; > + size_t size = 0; > + rcu_read_lock ? Thanks, Mathieu > + list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) > + size += chunk->end_addr - chunk->start_addr; > + return size; > +} > +EXPORT_SYMBOL_GPL(gen_pool_size); -- Mathieu Desnoyers Operating System Efficiency R&D Consultant EfficiOS Inc. http://www.efficios.com -- To unsubscribe from this list: send the line "unsubscribe linux-acpi" in the body of a message to majordomo@xxxxxxxxxxxxxxx More majordomo info at http://vger.kernel.org/majordomo-info.html