On Tue, Aug 14, 2012 at 10:58:07AM +0800, Xiao Guangrong wrote: > On 08/14/2012 01:39 AM, Marcelo Tosatti wrote: > > On Sat, Aug 11, 2012 at 11:36:20AM +0800, Xiao Guangrong wrote: > >> On 08/11/2012 02:14 AM, Marcelo Tosatti wrote: > >>> On Tue, Aug 07, 2012 at 05:47:15PM +0800, Xiao Guangrong wrote: > >>>> Changelog: > >>>> - introduce KVM_PFN_ERR_RO_FAULT instead of dummy page > >>>> - introduce KVM_HVA_ERR_BAD and optimize error hva indicators > >>>> > >>>> The test case can be found at: > >>>> http://lkml.indiana.edu/hypermail/linux/kernel/1207.2/00819/migrate-perf.tar.bz2 > >>>> > >>>> In current code, if we map a readonly memory space from host to guest > >>>> and the page is not currently mapped in the host, we will get a fault-pfn > >>>> and async is not allowed, then the vm will crash. > >>>> > >>>> As Avi's suggestion, We introduce readonly memory region to map ROM/ROMD > >>>> to the guest, read access is happy for readonly memslot, write access on > >>>> readonly memslot will cause KVM_EXIT_MMIO exit. > >>> > >>> Memory slots whose QEMU mapping is write protected is supported > >>> today, as long as there are no write faults. > >>> > >>> What prevents the use of mmap(!MAP_WRITE) to handle read-only memslots > >>> again? > >>> > >> > >> It is happy to map !write host memory space to the readonly memslot, > >> and they can coexist as well. > >> > >> readonly memslot checks the write-permission by seeing slot->flags and > >> !write memory checks the write-permission in hva_to_pfn() function > >> which checks vma->flags. It is no conflict. > > > > Yes, there is no conflict. The point is, if you can use the > > mmap(PROT_READ) interface (supporting read faults on read-only slots) > > for this behavior, what is the advantage of a new memslot flag? > > > > You can get the discussion at: > https://lkml.org/lkml/2012/5/22/228 > > > I'm not saying mmap(PROT_READ) is the best interface, i am just asking > > why it is not. > > My fault. :( > > > > >>> The initial objective was to fix a vm crash, can you explain that > >>> initial problem? > >>> > >> > >> The issue was trigged by this code: > >> > >> } else { > >> if (async && (vma->vm_flags & VM_WRITE)) > >> *async = true; > >> pfn = KVM_PFN_ERR_FAULT; > >> } > >> > >> If the host memory region is readonly (!vma->vm_flags & VM_WRITE) and > >> its physical page is swapped out (or the file data does not be read in), > >> get_user_page_nowait will fail, above code reject to set async, > >> then we will get a fault pfn and async=false. > >> > >> I guess this issue also exists in "QEMU write protected mapping" as > >> you mentioned above. > > > > Yes, it does. As far as i understand, what that check does from a high > > level pov is: > > > > - Did get_user_pages_nowait() fail due to a swapped out page (in which > > case we should try to swappin the page asynchronously), or due to > > another reason (for which case an error should be returned). > > > > Using vma->vm_flags VM_WRITE for that is trying to guess why > > get_user_pages_nowait() failed, because it (gup_nowait return values) > > does not provide sufficient information by itself. > > > > That is exactly what i did in the first version. :) > > You can see it and the reason why it switched to the new way (readonly memslot) > in the above website (the first message in thread). Userspace can create multiple mappings for the same memory region, for example via shared memory (shm_open), and have different protections for the two (or more) regions. I had old patch doing this, its attached. > > Can't that be fixed separately? > > > > Another issue which is also present with the mmap(PROT_READ) scheme is > > interaction with reexecute_instruction. That is, unless i am mistaken, > > reexecute_instruction can succeed (return true) on a region that is > > write protected. This breaks the "write faults on read-only slots exit > > to userspace via EXIT_MMIO" behaviour. > > Sorry, Why? After re-entry to the guest, it can not generate a correct MMIO? reexecute_instruction validates presence of GPA by looking at registered memslots. But if the access is a write, and userspace memory map is read-only, reexecute_instruction should exit via MMIO. That is, reexecute_instruction must validate GPA using registered memslots AND additionaly userspace map permission, not only registered memslot.
Index: qemu-kvm-gpage-cache/cpu-common.h =================================================================== --- qemu-kvm-gpage-cache.orig/cpu-common.h +++ qemu-kvm-gpage-cache/cpu-common.h @@ -33,6 +33,7 @@ ram_addr_t qemu_ram_alloc(ram_addr_t); void qemu_ram_free(ram_addr_t addr); /* This should only be used for ram local to a device. */ void *qemu_get_ram_ptr(ram_addr_t addr); +void *qemu_get_ram_ptr_guest(ram_addr_t addr); /* This should not be used by devices. */ int do_qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr); ram_addr_t qemu_ram_addr_from_host(void *ptr); Index: qemu-kvm-gpage-cache/exec.c =================================================================== --- qemu-kvm-gpage-cache.orig/exec.c +++ qemu-kvm-gpage-cache/exec.c @@ -35,6 +35,7 @@ #include "exec-all.h" #include "qemu-common.h" #include "cache-utils.h" +#include "sysemu.h" #if !defined(TARGET_IA64) #include "tcg.h" @@ -124,6 +125,7 @@ static int in_migration; typedef struct RAMBlock { uint8_t *host; + uint8_t *guest; ram_addr_t offset; ram_addr_t length; struct RAMBlock *next; @@ -2450,7 +2452,8 @@ static long gethugepagesize(const char * return fs.f_bsize; } -static void *file_ram_alloc(ram_addr_t memory, const char *path) +static void *file_ram_alloc(ram_addr_t memory, const char *path, + RAMBlock *block) { char *filename; void *area; @@ -2507,7 +2510,12 @@ static void *file_ram_alloc(ram_addr_t m * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED * to sidestep this quirk. */ - flags = mem_prealloc ? MAP_POPULATE|MAP_SHARED : MAP_PRIVATE; + if (mem_guest_map) + flags = MAP_SHARED; + else if (mem_prealloc) + flags = MAP_POPULATE|MAP_SHARED; + else + flags = MAP_PRIVATE; area = mmap(0, memory, PROT_READ|PROT_WRITE, flags, fd, 0); #else area = mmap(0, memory, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0); @@ -2517,12 +2525,22 @@ static void *file_ram_alloc(ram_addr_t m close(fd); return (NULL); } + if (mem_guest_map) { + block->guest = mmap(0, memory, PROT_READ|PROT_WRITE, flags, fd, 0); + if (block->guest == MAP_FAILED) { + perror("alloc_mem_area: can't mmap guest map"); + munmap(area, memory); + close(fd); + return NULL; + } + } return area; } #else -static void *file_ram_alloc(ram_addr_t memory, const char *path) +static void *file_ram_alloc(ram_addr_t memory, const char *path, + RAMBlock *block) { return NULL; } @@ -2538,7 +2556,7 @@ ram_addr_t qemu_ram_alloc(ram_addr_t siz size = TARGET_PAGE_ALIGN(size); new_block = qemu_malloc(sizeof(*new_block)); - new_block->host = file_ram_alloc(size, mem_path); + new_block->host = file_ram_alloc(size, mem_path, new_block); if (!new_block->host) { #if defined(TARGET_S390X) && defined(CONFIG_KVM) /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */ @@ -2584,7 +2602,8 @@ void qemu_ram_free(ram_addr_t addr) It should not be used for general purpose DMA. Use cpu_physical_memory_map/cpu_physical_memory_rw instead. */ -void *qemu_get_ram_ptr(ram_addr_t addr) + +static void *__qemu_get_ram_ptr(ram_addr_t addr) { RAMBlock *prev; RAMBlock **prevp; @@ -2610,9 +2629,27 @@ void *qemu_get_ram_ptr(ram_addr_t addr) block->next = *prevp; *prevp = block; } + return block; +} + +void *qemu_get_ram_ptr(ram_addr_t addr) +{ + RAMBlock *block = __qemu_get_ram_ptr(addr); + return block->host + (addr - block->offset); } +void *qemu_get_ram_ptr_guest(ram_addr_t addr) +{ + RAMBlock *block; + + if (!mem_guest_map) + return qemu_get_ram_ptr(addr); + + block = __qemu_get_ram_ptr(addr); + return block->guest + (addr - block->offset); +} + int do_qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr) { RAMBlock *prev; Index: qemu-kvm-gpage-cache/qemu-kvm.c =================================================================== --- qemu-kvm-gpage-cache.orig/qemu-kvm.c +++ qemu-kvm-gpage-cache/qemu-kvm.c @@ -2327,7 +2327,7 @@ void kvm_set_phys_mem(target_phys_addr_t #endif r = kvm_register_phys_mem(kvm_context, start_addr, - qemu_get_ram_ptr(phys_offset), size, 0); + qemu_get_ram_ptr_guest(phys_offset), size, 0); if (r < 0) { printf("kvm_cpu_register_physical_memory: failed\n"); exit(1); Index: qemu-kvm-gpage-cache/sysemu.h =================================================================== --- qemu-kvm-gpage-cache.orig/sysemu.h +++ qemu-kvm-gpage-cache/sysemu.h @@ -15,6 +15,7 @@ /* vl.c */ extern const char *bios_name; +extern int mem_guest_map; #define QEMU_FILE_TYPE_BIOS 0 #define QEMU_FILE_TYPE_KEYMAP 1 Index: qemu-kvm-gpage-cache/vl.c =================================================================== --- qemu-kvm-gpage-cache.orig/vl.c +++ qemu-kvm-gpage-cache/vl.c @@ -248,6 +248,7 @@ const char *mem_path = NULL; #ifdef MAP_POPULATE int mem_prealloc = 1; /* force preallocation of physical target memory */ #endif +int mem_guest_map = 1; /* separate qemu/guest mappings for RAM */ #ifdef TARGET_ARM int old_param = 0; #endif