On Mon, Oct 16, 2023, David Woodhouse wrote: > On Mon, 2023-10-16 at 08:47 -0700, Dongli Zhang wrote: > > Suppose we are discussing a non-permanenet solution, I would suggest: > > > > 1. Document something to accept that kvm-clock (or pvclock on KVM, including Xen > > on KVM) is not good enough in some cases, e.g., vCPU hotplug. > > I still don't understand the vCPU hotplug case. > > In the case where the TSC is actually sane, why would we need to reset > the masterclock on vCPU hotplug? > > The new vCPU gets its TSC synchronised to the others, and its kvmclock > parameters (mul/shift/offset based on the guest TSC) can be *precisely* > the same as the other vCPUs too, can't they? Why reset anything? Aha! I think I finally figured out why KVM behaves the way it does. The unnecessary masterclock updates effectively came from: commit 7f187922ddf6b67f2999a76dcb71663097b75497 Author: Marcelo Tosatti <mtosatti@xxxxxxxxxx> Date: Tue Nov 4 21:30:44 2014 -0200 KVM: x86: update masterclock values on TSC writes When the guest writes to the TSC, the masterclock TSC copy must be updated as well along with the TSC_OFFSET update, otherwise a negative tsc_timestamp is calculated at kvm_guest_time_update. Once "if (!vcpus_matched && ka->use_master_clock)" is simplified to "if (ka->use_master_clock)", the corresponding "if (!ka->use_master_clock)" becomes redundant, so remove the do_request boolean and collapse everything into a single condition. Before that, KVM only re-synced the masterclock if it was enabled or disabled, i.e. KVM behaved as we want it to behave. Note, at the time of the above commit, VMX synchronized TSC on *guest* writes to MSR_IA32_TSC: case MSR_IA32_TSC: kvm_write_tsc(vcpu, msr_info); break; That got changed by commit 0c899c25d754 ("KVM: x86: do not attempt TSC synchronization on guest writes"), but I don't think the guest angle is actually relevant to the fix. AFAICT, a write from the host would suffer the same problem. But knowing that KVM synced on guest writes is crucial to understanding the changelog. In kvm_write_tsc(), except for KVM's wonderful "less than 1 second" hack, KVM snapshotted the vCPU's current TSC *and* the current time in nanoseconds, where kvm->arch.cur_tsc_nsec is the current host kernel time in nanoseconds. ns = get_kernel_ns(); ... if (usdiff < USEC_PER_SEC && vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { ... } else { /* * We split periods of matched TSC writes into generations. * For each generation, we track the original measured * nanosecond time, offset, and write, so if TSCs are in * sync, we can match exact offset, and if not, we can match * exact software computation in compute_guest_tsc() * * These values are tracked in kvm->arch.cur_xxx variables. */ kvm->arch.cur_tsc_generation++; kvm->arch.cur_tsc_nsec = ns; kvm->arch.cur_tsc_write = data; kvm->arch.cur_tsc_offset = offset; matched = false; pr_debug("kvm: new tsc generation %llu, clock %llu\n", kvm->arch.cur_tsc_generation, data); } ... /* Keep track of which generation this VCPU has synchronized to */ vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; Note that the above sets matched to false! But because kvm_track_tsc_matching() looks for matched+1, i.e. doesn't require the first vCPU to match itself, KVM would immediately compute vcpus_matched as true for VMs with a single vCPU. As a result, KVM would skip the masterlock update, even though a new TSC generation was created. vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == atomic_read(&vcpu->kvm->online_vcpus)); if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC) if (!ka->use_master_clock) do_request = 1; if (!vcpus_matched && ka->use_master_clock) do_request = 1; if (do_request) kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); On hardware without TSC scaling support, vcpu->tsc_catchup is set to true if the guest TSC frequency is faster than the host TSC frequency, even if the TSC is otherwise stable. And for that mode, kvm_guest_time_update(), by way of compute_guest_tsc(), uses vcpu->arch.this_tsc_nsec, a.k.a. the kernel time at the last TSC write, to compute the guest TSC relative to kernel time: static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) { u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, vcpu->arch.virtual_tsc_mult, vcpu->arch.virtual_tsc_shift); tsc += vcpu->arch.this_tsc_write; return tsc; } Except the @kernel_ns passed to compute_guest_tsc() isn't the current kernel time, it's the masterclock snapshot! spin_lock(&ka->pvclock_gtod_sync_lock); use_master_clock = ka->use_master_clock; if (use_master_clock) { host_tsc = ka->master_cycle_now; kernel_ns = ka->master_kernel_ns; } spin_unlock(&ka->pvclock_gtod_sync_lock); if (vcpu->tsc_catchup) { u64 tsc = compute_guest_tsc(v, kernel_ns); if (tsc > tsc_timestamp) { adjust_tsc_offset_guest(v, tsc - tsc_timestamp); tsc_timestamp = tsc; } } And so the "kernel_ns-vcpu->arch.this_tsc_nsec" is *guaranteed* to generate a negative value, because this_tsc_nsec was captured after ka->master_kernel_ns. Forcing a masterclock update essentially fudged around that problem, but in a heavy handed way that introduced undesirable side effects, i.e. unnecessarily forces a masterclock update when a new vCPU joins the party via hotplug. Compile tested only, but the below should fix the vCPU hotplug case. Then someone (not me) just needs to figure out why kvm_xen_shared_info_init() forces a masterclock update. I still think we should clean up the periodic sync code, but I don't think we need to periodically sync the masterclock. --- arch/x86/kvm/x86.c | 29 ++++++++++++++++------------- 1 file changed, 16 insertions(+), 13 deletions(-) diff --git a/arch/x86/kvm/x86.c b/arch/x86/kvm/x86.c index c54e1133e0d3..f0a607b6fc31 100644 --- a/arch/x86/kvm/x86.c +++ b/arch/x86/kvm/x86.c @@ -2510,26 +2510,29 @@ static inline int gtod_is_based_on_tsc(int mode) } #endif -static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) +static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation) { #ifdef CONFIG_X86_64 - bool vcpus_matched; struct kvm_arch *ka = &vcpu->kvm->arch; struct pvclock_gtod_data *gtod = &pvclock_gtod_data; - vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == - atomic_read(&vcpu->kvm->online_vcpus)); + /* + * To use the masterclock, the host clocksource must be based on TSC + * and all vCPUs must have matching TSCs. Note, the count for matching + * vCPUs doesn't include the reference vCPU, hence "+1". + */ + bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 == + atomic_read(&vcpu->kvm->online_vcpus)) && + gtod_is_based_on_tsc(gtod->clock.vclock_mode); /* - * Once the masterclock is enabled, always perform request in - * order to update it. - * - * In order to enable masterclock, the host clocksource must be TSC - * and the vcpus need to have matched TSCs. When that happens, - * perform request to enable masterclock. + * Request a masterclock update if the masterclock needs to be toggled + * on/off, or when starting a new generation and the masterclock is + * enabled (compute_guest_tsc() requires the masterclock snaphot to be + * taken _after_ the new generation is created). */ - if (ka->use_master_clock || - (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) + if ((ka->use_master_clock && new_generation) || + (ka->use_master_clock != use_master_clock)) kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, @@ -2706,7 +2709,7 @@ static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; - kvm_track_tsc_matching(vcpu); + kvm_track_tsc_matching(vcpu, !matched); } static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value) base-commit: dfdc8b7884b50e3bfa635292973b530a97689f12 --