In the worst case scenario, it may iterate over all vCPUs in the vm in order to complete injecting an SGI interrupt. However, the ICC_SGI_* register provides affinity routing information, and we are interested in exploring the possibility of utilizing this information to reduce iteration times from a total of vcpu numbers to 16 (the length of the targetlist), or even 8 times. This work is based on v5.4, and here is test data: 4 cores with vcpu pinning: | ipi benchmark | vgic_v3_dispatch_sgi | | original | with patch | impoved | original | with patch | impoved | | core0 -> core1 | 292610285 ns | 299856696 ns | -2.5% | 1471 ns | 1508 ns | -2.5% | | core0 -> core3 | 333815742 ns | 327647989 ns | +1.8% | 1578 ns | 1532 ns | +2.9% | | core0 -> all | 439754104 ns | 433987192 ns | +1.3% | 2970 ns | 2875 ns | +3.2% | 32 cores with vcpu pinning: | ipi benchmark | vgic_v3_dispatch_sgi | | original | with patch | impoved | original | with patch | impoved | | core0 -> core1 | 269153219 ns | 261636906 ns | +2.8% | 1743 ns | 1706 ns | +2.1% | | core0 -> core31 | 685199666 ns | 355250664 ns | +48.2% | 4238 ns | 1838 ns | +56.6% | | core0 -> all | 7281278980 ns | 3403240773 ns | +53.3% | 30879 ns | 13843 ns | +55.2% | Based on the test results, the performance of vm with less than 16 cores remains almost the same, while significant improvement can be observed with more than 16 cores. Signed-off-by: Xu Zhao <zhaoxu.35@xxxxxxxxxxxxx> --- include/linux/kvm_host.h | 5 ++ virt/kvm/arm/vgic/vgic-mmio-v3.c | 136 +++++++++++++++---------------- 2 files changed, 73 insertions(+), 68 deletions(-) diff --git a/include/linux/kvm_host.h b/include/linux/kvm_host.h index 027e155daf8c..efc7b96946c1 100644 --- a/include/linux/kvm_host.h +++ b/include/linux/kvm_host.h @@ -580,6 +580,11 @@ static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \ idx++) +#define kvm_for_each_target_vcpus(idx, target_cpus) \ + for (idx = target_cpus & 0xff ? 0 : (ICC_SGI1R_AFFINITY_1_SHIFT>>1); \ + (1 << idx) <= target_cpus; \ + idx++) + static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) { struct kvm_vcpu *vcpu = NULL; diff --git a/virt/kvm/arm/vgic/vgic-mmio-v3.c b/virt/kvm/arm/vgic/vgic-mmio-v3.c index 24011280c4b1..bb64148ab75b 100644 --- a/virt/kvm/arm/vgic/vgic-mmio-v3.c +++ b/virt/kvm/arm/vgic/vgic-mmio-v3.c @@ -852,44 +852,60 @@ int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr) return 0; } + /* - * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI - * generation register ICC_SGI1R_EL1) with a given VCPU. - * If the VCPU's MPIDR matches, return the level0 affinity, otherwise - * return -1. + * Get affinity routing index from ICC_SGI_* register + * format: + * aff3 aff2 aff1 aff0 + * |- 8 bits -|- 8 bits -|- 8 bits -|- 4 bits or 8bits -| */ -static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu) +static u64 sgi_to_affinity(unsigned long reg) { - unsigned long affinity; - int level0; + u64 aff; - /* - * Split the current VCPU's MPIDR into affinity level 0 and the - * rest as this is what we have to compare against. - */ - affinity = kvm_vcpu_get_mpidr_aff(vcpu); - level0 = MPIDR_AFFINITY_LEVEL(affinity, 0); - affinity &= ~MPIDR_LEVEL_MASK; + /* aff3 - aff1 */ + aff = (((reg) & ICC_SGI1R_AFFINITY_3_MASK) >> ICC_SGI1R_AFFINITY_3_SHIFT) << 16 | + (((reg) & ICC_SGI1R_AFFINITY_2_MASK) >> ICC_SGI1R_AFFINITY_2_SHIFT) << 8 | + (((reg) & ICC_SGI1R_AFFINITY_1_MASK) >> ICC_SGI1R_AFFINITY_1_SHIFT); - /* bail out if the upper three levels don't match */ - if (sgi_aff != affinity) - return -1; + /* if use range selector, TargetList[n] represents aff0 value ((RS * 16) + n) */ + if ((reg) & ICC_SGI1R_RS_MASK) { + aff <<= 4; + aff |= (reg) & ICC_SGI1R_RS_MASK; + } - /* Is this VCPU's bit set in the mask ? */ - if (!(sgi_cpu_mask & BIT(level0))) - return -1; + /* aff0, the length of targetlist in sgi register is 16, which is 4bit */ + aff <<= 4; - return level0; + return aff; } /* - * The ICC_SGI* registers encode the affinity differently from the MPIDR, - * so provide a wrapper to use the existing defines to isolate a certain - * affinity level. + * inject a vsgi to vcpu */ -#define SGI_AFFINITY_LEVEL(reg, level) \ - ((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \ - >> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level)) +static inline void vgic_v3_inject_sgi(struct kvm_vcpu *vcpu, int sgi, bool allow_group1) +{ + struct vgic_irq *irq; + unsigned long flags; + + irq = vgic_get_irq(vcpu->kvm, vcpu, sgi); + + raw_spin_lock_irqsave(&irq->irq_lock, flags); + + /* + * An access targeting Group0 SGIs can only generate + * those, while an access targeting Group1 SGIs can + * generate interrupts of either group. + */ + if (!irq->group || allow_group1) { + irq->pending_latch = true; + vgic_queue_irq_unlock(vcpu->kvm, irq, flags); + } else { + raw_spin_unlock_irqrestore(&irq->irq_lock, flags); + } + + vgic_put_irq(vcpu->kvm, irq); +} /** * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs @@ -910,64 +926,48 @@ void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg, bool allow_group1) struct kvm *kvm = vcpu->kvm; struct kvm_vcpu *c_vcpu; u16 target_cpus; - u64 mpidr; int sgi, c; int vcpu_id = vcpu->vcpu_id; bool broadcast; - unsigned long flags; + u64 aff_index; sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT; broadcast = reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT); target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT; - mpidr = SGI_AFFINITY_LEVEL(reg, 3); - mpidr |= SGI_AFFINITY_LEVEL(reg, 2); - mpidr |= SGI_AFFINITY_LEVEL(reg, 1); /* - * We iterate over all VCPUs to find the MPIDRs matching the request. - * If we have handled one CPU, we clear its bit to detect early - * if we are already finished. This avoids iterating through all - * VCPUs when most of the times we just signal a single VCPU. + * Writing IRM bit is not a frequent behavior, so separate SGI injection into two parts. + * If it is not broadcast, compute the affinity routing index first, + * then iterate targetlist to find the target VCPU. + * Or, inject sgi to all VCPUs but the calling one. */ - kvm_for_each_vcpu(c, c_vcpu, kvm) { - struct vgic_irq *irq; - - /* Exit early if we have dealt with all requested CPUs */ - if (!broadcast && target_cpus == 0) - break; - - /* Don't signal the calling VCPU */ - if (broadcast && c == vcpu_id) - continue; + if (likely(!broadcast)) { + /* compute affinity routing index */ + aff_index = sgi_to_affinity(reg); - if (!broadcast) { - int level0; + /* Exit if meet a wrong affinity value */ + if (aff_index >= atomic_read(&kvm->online_vcpus)) + return; - level0 = match_mpidr(mpidr, target_cpus, c_vcpu); - if (level0 == -1) + /* Iterate target list */ + kvm_for_each_target_vcpus(c, target_cpus) { + if (!(target_cpus & (1 << c))) continue; - /* remove this matching VCPU from the mask */ - target_cpus &= ~BIT(level0); - } - - irq = vgic_get_irq(vcpu->kvm, c_vcpu, sgi); - - raw_spin_lock_irqsave(&irq->irq_lock, flags); + c_vcpu = kvm_get_vcpu_by_id(kvm, aff_index+c); + if (!c_vcpu) + break; - /* - * An access targetting Group0 SGIs can only generate - * those, while an access targetting Group1 SGIs can - * generate interrupts of either group. - */ - if (!irq->group || allow_group1) { - irq->pending_latch = true; - vgic_queue_irq_unlock(vcpu->kvm, irq, flags); - } else { - raw_spin_unlock_irqrestore(&irq->irq_lock, flags); + vgic_v3_inject_sgi(c_vcpu, sgi, allow_group1); } + } else { + kvm_for_each_vcpu(c, c_vcpu, kvm) { + /* don't signal the calling vcpu */ + if (c_vcpu->vcpu_id == vcpu_id) + continue; - vgic_put_irq(vcpu->kvm, irq); + vgic_v3_inject_sgi(c_vcpu, sgi, allow_group1); + } } } -- 2.20.1