[PATCH v15 000/115] KVM TDX basic feature support

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



From: Isaku Yamahata <isaku.yamahata@xxxxxxxxx>

KVM TDX basic feature support

Hello.  This is v15 the patch series vof KVM TDX support.  This is based on
v6.5-rc2 + the following patch series + minor fixes.
Since this patch series changes uABI from the previous version, the
corresponding qemu needs to be use.

Related patch series This patch is based on:
- v11 KVM: guest_memfd() and per-page attributes
  https://lore.kernel.org/all/20230718234512.1690985-1-seanjc@xxxxxxxxxx/

- v4 KVM: guest_memfd(), X86: Common base for snp and TDX
  https://lore.kernel.org/all/cover.1689893403.git.isaku.yamahata@xxxxxxxxx/

- TDX host kernel support v11
  https://lore.kernel.org/lkml/cover.1685887183.git.kai.huang@xxxxxxxxx/

The tree can be found at https://github.com/intel/tdx/tree/kvm-upstream
The corresponding qemu branch is found at
https://github.com/yamahata/qemu/tree/tdx/qemu-upm
How to run/test: It's describe at https://github.com/intel/tdx/wiki/TDX-KVM

More features tree is found at
https://github.com/intel/tdx/tree/kvm-upstream-workaround

Isaku Yamahata

Changes from v14:
https://lore.kernel.org/all/cover.1685333727.git.isaku.yamahata@xxxxxxxxx/
- rebased to v6.5-rc2, v11 KVM guest_memfd(), v11 TDX host kernel support
- ABI change to add reserved member for future compatibility, dropped unused
  member.
- handle EXIT_REASON_OTHER_SMI
- handle FEAT_CTL MSR access

Changes from v13:
- rbased to v6.4-rc3
- Make use of KVM gmem.
- Added check_cpuid callback for KVM_SET_CPUID2 as RFC patch.
- ABI change of KVM_TDX_VM_INIT as VM scoped KVM ioctl.
- Make TDX initialization non-depend on kvm hardware_enable.
  Use vmx_hardware_enable directly.
- Drop a patch to prohibit dirty logging as new KVM gmem code base
- Drop parameter only checking for some TDG.VP.VMCALL. Just default part

Changes from v12:
- ABI change of KVM_TDX_VM_INIT
- Rename kvm_gfn_{private, shared} to kvm_gfn_to_{private, shared}
- Move APIC BASE MSI initialization to KVM_TDX_VCPU_INIT
- Fix MTRR patch
- Make MapGpa hypercall always pass it to user space VMM
- Split hooks to TDP MMU into two part. populating and zapping.

Changes from v11:
- ABI change of KVM_TDX_VM_INIT
- Split the hook of TDP MMU to not modify handle_changed_spte()
- Enhanced commit message on mtrr patch
- Made KVM_CAP_MAX_VCPUS to x86 specific

Changes from v10:
- rebased to v6.2-rc3
- support mtrr with its own patches
- Integrated fd-based private page v10
- Integrated TDX host kernel support v8
- Integrated kvm_init rework v2
- removed struct tdx_td_page and its initialization logic
- cleaned up mmio spte and require enable_mmio_caching=true for TDX
- removed dubious WARN_ON_ONCE()
- split a patch adding methods as nop into several patches

Changes from v9:
- rebased to v6.1-rc2
- Integrated fd-based private page v9 as prerequisite.
- Integrated TDX host kernel support v6
- TDP MMU: Make handle_change_spte() return value.
- TDX: removed seamcall_lock and return -EAGAIN so that TDP MMU can retry

Changes from v8:
- rebased to v6.0-rc7
- Integrated with kvm hardware initialization.  Check all packages has at least
  one online CPU when creating guest TD and refuse cpu offline during guest TDs
  are running.
- Integrated fd-based private page v8 as prerequisite.
- TDP MMU: Introduced more callbacks instead of single callback.

Changes from v7:
- Use xarray to track whether GFN is private or shared. Drop SPTE_SHARED_MASK.
  The complex state machine with SPTE_SHARED_MASK was ditched.
- Large page support is implemented. But will be posted as independent RFC patch.
- fd-based private page v7 is integrated. This is mostly same to Chao's patches.
  It's in github.

Changes from v6:
- rebased to v5.19

Changes from v5:
- export __seamcall and use it
- move mutex lock from callee function of smp_call_on_cpu to the caller.
- rename mmu_prezap => flush_shadow_all_private() and tdx_mmu_release_hkid
- updated comment
- drop the use of tdh_mng_key.reclaimid(): as the function is for backward
  compatibility to only return success
- struct kvm_tdx_cmd: metadata => flags, added __u64 error.
- make this ioctl systemwide ioctl
- ABI change to struct kvm_init_vm
- guest_tsc_khz: use kvm->arch.default_tsc_khz
- rename BUILD_BUG_ON_MEMCPY to MEMCPY_SAME_SIZE
- drop exporting kvm_set_tsc_khz().
- fix kvm_tdp_page_fault() for mtrr emulation
- rename it to kvm_gfn_shared_mask(), dropped kvm_gpa_shared_mask()
- drop kvm_is_private_gfn(), kept kvm_is_private_gpa()
  keep kvm_{gfn, gpa}_private(), kvm_gpa_private()
- update commit message
- rename shadow_init_value => shadow_nonprsent_value
- added ept_violation_ve_test mode
- shadow_nonpresent_value => SHADOW_NONPRESENT_VALUE in tdp_mmu.c
- legacy MMU case
  => - mmu_topup_shadow_page_cache(), kvm_mmu_create()
     - FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
- #VE warning:
- rename: REMOVED_SPTE => __REMOVED_SPTE, SHADOW_REMOVED_SPTE => REMOVED_SPTE
- merge into Like we discussed, this patch should be merged with patch
  "KVM: x86/mmu: Allow non-zero init value for shadow PTE".
- fix pointed by Sagi. check !is_private check => (kvm_gfn_shared_mask && !is_private)
- introduce kvm_gfn_for_root(kvm, root, gfn)
- add only_shared argument to kvm_tdp_mmu_handle_gfn()
- use kvm_arch_dirty_log_supported()
- rename SPTE_PRIVATE_PROHIBIT to SPTE_SHARED_MASK.
- rename: is_private_prohibit_spte() => spte_shared_mask()
- fix: shadow_nonpresent_value => SHADOW_NONPRESENT_VALUE in comment
- dropped this patch as the change was merged into kvm/queue
- update vt_apicv_post_state_restore()
- use is_64_bit_hypercall()
- comment: expand MSMI -> Machine Check System Management Interrupt
- fixed TDX_SEPT_PFERR
- tdvmcall_p[1234]_{write, read}() => tdvmcall_a[0123]_{read,write}()
- rename tdmvcall_exit_readon() => tdvmcall_leaf()
- remove optional zero check of argument.
- do a check for static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE)
   in kvm_vcpu_ioctl_smi and __apic_accept_irq.
- WARN_ON_ONCE in tdx_smi_allowed and tdx_enable_smi_window.
- introduce vcpu_deliver_init to x86_ops
- sprinkeled KVM_BUG_ON()

Changes from v4:
- rebased to TDX host kernel patch series.
- include all the patches to make this patch series working.
- add [MARKER] patches to mark the patch layer clear.

---
* What's TDX?
TDX stands for Trust Domain Extensions, which extends Intel Virtual Machines
Extensions (VMX) to introduce a kind of virtual machine guest called a Trust
Domain (TD) for confidential computing.

A TD runs in a CPU mode that is designed to protect the confidentiality of its
memory contents and its CPU state from any other software, including the hosting
Virtual Machine Monitor (VMM), unless explicitly shared by the TD itself.

We have more detailed explanations below (***).
We have the high-level design of TDX KVM below (****).

In this patch series, we use "TD" or "guest TD" to differentiate it from the
current "VM" (Virtual Machine), which is supported by KVM today.

* The organization of this patch series
This patch series is on top of the patches series "TDX host kernel support":
https://lore.kernel.org/lkml/cover.1646007267.git.kai.huang@xxxxxxxxx/

This patch series is available at
https://github.com/intel/tdx/tree/kvm-upstream

The related repositories (TDX qemu, TDX OVMF(tdvf) etc) are described at
https://github.com/intel/tdx/wiki/TDX-KVM

The relations of the layers are depicted as follows.
The arrows below show the order of patch reviews we would like to have.

The below layers are chosen so that the device model, for example, qemu can
exercise each layering step by step.  Check if TDX is supported, create TD VM,
create TD vcpu, allow vcpu running, populate TD guest private memory, and handle
vcpu exits/hypercalls/interrupts to run TD fully.

  TDX vcpu
  interrupt/exits/hypercall<------------\
        ^                               |
        |                               |
  TD finalization                       |
        ^                               |
        |                               |
  TDX EPT violation<------------\       |
        ^                       |       |
        |                       |       |
  TD vcpu enter/exit            |       |
        ^                       |       |
        |                       |       |
  TD vcpu creation/destruction  |       \-------KVM TDP MMU MapGPA
        ^                       |                       ^
        |                       |                       |
  TD VM creation/destruction    \---------------KVM TDP MMU hooks
        ^                                               ^
        |                                               |
  TDX architectural definitions                 KVM TDP refactoring for TDX
        ^                                               ^
        |                                               |
   TDX, VMX    <--------TDX host kernel         KVM MMU GPA stolen bits
   coexistence          support


The followings are explanations of each layer.  Each layer has a dummy commit
that starts with [MARKER] in subject.  It is intended to help to identify where
each layer starts.

TDX host kernel support:
        https://lore.kernel.org/lkml/cover.1646007267.git.kai.huang@xxxxxxxxx/
        The guts of system-wide initialization of TDX module.  There is an
        independent patch series for host x86.  TDX KVM patches call functions
        this patch series provides to initialize the TDX module.

TDX, VMX coexistence:
        Infrastructure to allow TDX to coexist with VMX and trigger the
        initialization of the TDX module.
        This layer starts with
        "KVM: VMX: Move out vmx_x86_ops to 'main.c' to wrap VMX and TDX"
TDX architectural definitions:
        Add TDX architectural definitions and helper functions
        This layer starts with
        "[MARKER] The start of TDX KVM patch series: TDX architectural definitions".
TD VM creation/destruction:
        Guest TD creation/destroy allocation and releasing of TDX specific vm
        and vcpu structure.  Create an initial guest memory image with TDX
        measurement.
        This layer starts with
        "[MARKER] The start of TDX KVM patch series: TD VM creation/destruction".
TD vcpu creation/destruction:
        guest TD creation/destroy Allocation and releasing of TDX specific vm
        and vcpu structure.  Create an initial guest memory image with TDX
        measurement.
        This layer starts with
        "[MARKER] The start of TDX KVM patch series: TD vcpu creation/destruction"
TDX EPT violation:
        Create an initial guest memory image with TDX measurement.  Handle
        secure EPT violations to populate guest pages with TDX SEAMCALLs.
        This layer starts with
        "[MARKER] The start of TDX KVM patch series: TDX EPT violation"
TD vcpu enter/exit:
        Allow TDX vcpu to enter into TD and exit from TD.  Save CPU state before
        entering into TD.  Restore CPU state after exiting from TD.
        This layer starts with
        "[MARKER] The start of TDX KVM patch series: TD vcpu enter/exit"
TD vcpu interrupts/exit/hypercall:
        Handle various exits/hypercalls and allow interrupts to be injected so
        that TD vcpu can continue running.
        This layer starts with
        "[MARKER] The start of TDX KVM patch series: TD vcpu exits/interrupts/hypercalls"

KVM MMU GPA shared bit:
        Introduce framework to handle shared bit repurposed bit of GPA TDX
        repurposed a bit of GPA to indicate shared or private. If it's shared,
        it's the same as the conventional VMX EPT case.  VMM can access shared
        guest pages.  If it's private, it's handled by Secure-EPT and the guest
        page is encrypted.
        This layer starts with
        "[MARKER] The start of TDX KVM patch series: KVM MMU GPA stolen bits"
KVM TDP refactoring for TDX:
        TDX Secure EPT requires different constants. e.g. initial value EPT
        entry value etc. Various refactoring for those differences.
        This layer starts with
        "[MARKER] The start of TDX KVM patch series: KVM TDP refactoring for TDX"
KVM TDP MMU hooks:
        Introduce framework to TDP MMU to add hooks in addition to direct EPT
        access TDX added Secure EPT which is an enhancement to VMX EPT.  Unlike
        conventional VMX EPT, CPU can't directly read/write Secure EPT. Instead,
        use TDX SEAMCALLs to operate on Secure EPT.
        This layer starts with
        "[MARKER] The start of TDX KVM patch series: KVM TDP MMU hooks"
KVM TDP MMU MapGPA:
        Introduce framework to handle switching guest pages from private/shared
        to shared/private.  For a given GPA, a guest page can be assigned to a
        private GPA or a shared GPA exclusively.  With TDX MapGPA hypercall,
        guest TD converts GPA assignments from private (or shared) to shared (or
        private).
        This layer starts with
        "[MARKER] The start of TDX KVM patch series: KVM TDP MMU MapGPA "

KVM guest private memory: (not shown in the above diagram)
[PATCH v4 00/12] KVM: mm: fd-based approach for supporting KVM guest private
memory: https://lkml.org/lkml/2022/1/18/395
        Guest private memory requires different memory management in KVM.  The
        patch proposes a way for it.  Integration with TDX KVM.

(***)
* TDX module
A CPU-attested software module called the "TDX module" is designed to implement
the TDX architecture, and it is loaded by the UEFI firmware today. It can be
loaded by the kernel or driver at runtime, but in this patch series we assume
that the TDX module is already loaded and initialized.

The TDX module provides two main new logical modes of operation built upon the
new SEAM (Secure Arbitration Mode) root and non-root CPU modes added to the VMX
architecture. TDX root mode is mostly identical to the VMX root operation mode,
and the TDX functions (described later) are triggered by the new SEAMCALL
instruction with the desired interface function selected by an input operand
(leaf number, in RAX). TDX non-root mode is used for TD guest operation.  TDX
non-root operation (i.e. "guest TD" mode) is similar to the VMX non-root
operation (i.e. guest VM), with changes and restrictions to better assure that
no other software or hardware has direct visibility of the TD memory and state.

TDX transitions between TDX root operation and TDX non-root operation include TD
Entries, from TDX root to TDX non-root mode, and TD Exits from TDX non-root to
TDX root mode.  A TD Exit might be asynchronous, triggered by some external
event (e.g., external interrupt or SMI) or an exception, or it might be
synchronous, triggered by a TDCALL (TDG.VP.VMCALL) function.

TD VCPUs can be entered using SEAMCALL(TDH.VP.ENTER) by KVM. TDH.VP.ENTER is one
of the TDX interface functions as mentioned above, and "TDH" stands for Trust
Domain Host. Those host-side TDX interface functions are categorized into
various areas just for better organization, such as SYS (TDX module management),
MNG (TD management), VP (VCPU), PHYSMEM (physical memory), MEM (private memory),
etc. For example, SEAMCALL(TDH.SYS.INFO) returns the TDX module information.

TDCS (Trust Domain Control Structure) is the main control structure of a guest
TD, and encrypted (using the guest TD's ephemeral private key).  At a high
level, TDCS holds information for controlling TD operation as a whole,
execution, EPTP, MSR bitmaps, etc that KVM needs to set it up.  Note that MSR
bitmaps are held as part of TDCS (unlike VMX) because they are meant to have the
same value for all VCPUs of the same TD.

Trust Domain Virtual Processor State (TDVPS) is the root control structure of a
TD VCPU.  It helps the TDX module control the operation of the VCPU, and holds
the VCPU state while the VCPU is not running. TDVPS is opaque to software and
DMA access, accessible only by using the TDX module interface functions (such as
TDH.VP.RD, TDH.VP.WR). TDVPS includes TD VMCS, and TD VMCS auxiliary structures,
such as virtual APIC page, virtualization exception information, etc.

Several VMX control structures (such as Shared EPT and Posted interrupt
descriptor) are directly managed and accessed by the host VMM.  These control
structures are pointed to by fields in the TD VMCS.

The above means that 1) KVM needs to allocate different data structures for TDs,
2) KVM can reuse the existing code for TDs for some operations, 3) it needs to
define TD-specific handling for others.  3) Redirect operations to .  3)
Redirect operations to the TDX specific callbacks, like "if (is_td_vcpu(vcpu))
tdx_callback() else vmx_callback();".

*TD Private Memory
TD private memory is designed to hold TD private content, encrypted by the CPU
using the TD ephemeral key. An encryption engine holds a table of encryption
keys, and an encryption key is selected for each memory transaction based on a
Host Key Identifier (HKID). By design, the host VMM does not have access to the
encryption keys.

In the first generation of MKTME, HKID is "stolen" from the physical address by
allocating a configurable number of bits from the top of the physical
address. The HKID space is partitioned into shared HKIDs for legacy MKTME
accesses and private HKIDs for SEAM-mode-only accesses. We use 0 for the shared
HKID on the host so that MKTME can be opaque or bypassed on the host.

During TDX non-root operation (i.e. guest TD), memory accesses can be qualified
as either shared or private, based on the value of a new SHARED bit in the Guest
Physical Address (GPA).  The CPU translates shared GPAs using the usual VMX EPT
(Extended Page Table) or "Shared EPT" (in this document), which resides in host
VMM memory. The Shared EPT is directly managed by the host VMM - the same as
with the current VMX. Since guest TDs usually require I/O, and the data exchange
needs to be done via shared memory, thus KVM needs to use the current EPT
functionality even for TDs.

* Secure EPT and Minoring using the TDP code
The CPU translates private GPAs using a separate Secure EPT.  The Secure EPT
pages are encrypted and integrity-protected with the TD's ephemeral private
key.  Secure EPT can be managed _indirectly_ by the host VMM, using the TDX
interface functions, and thus conceptually Secure EPT is a subset of EPT (why
"subset"). Since execution of such interface functions takes much longer time
than accessing memory directly, in KVM we use the existing TDP code to minor the
Secure EPT for the TD.

This way, we can effectively walk Secure EPT without using the TDX interface
functions.

* VM life cycle and TDX specific operations
The userspace VMM, such as QEMU, needs to build and treat TDs differently.  For
example, a TD needs to boot in private memory, and the host software cannot copy
the initial image to private memory.

* TSC Virtualization
The TDX module helps TDs maintain reliable TSC (Time Stamp Counter) values
(e.g. consistent among the TD VCPUs) and the virtual TSC frequency is determined
by TD configuration, i.e. when the TD is created, not per VCPU.  The current KVM
owns TSC virtualization for VMs, but the TDX module does for TDs.

* MCE support for TDs
The TDX module doesn't allow VMM to inject MCE.  Instead PV way is needed for TD
to communicate with VMM.  For now, KVM silently ignores MCE request by VMM.  MSRs
related to MCE (e.g, MCE bank registers) can be naturally emulated by
paravirtualizing MSR access.

[1] For details, the specifications, [2], [3], [4], [5], [6], [7], are
available.

* Restrictions or future work
Some features are not included to reduce patch size.  Those features are
addressed as future independent patch series.
- large page (2M, 1G)
- qemu gdb stub
- guest PMU
- and more

* Prerequisites
It's required to load the TDX module and initialize it.  It's out of the scope
of this patch series.  Another independent patch for the common x86 code is
planned.  It defines CONFIG_INTEL_TDX_HOST and this patch series uses
CONFIG_INTEL_TDX_HOST.  It's assumed that With CONFIG_INTEL_TDX_HOST=y, the TDX
module is initialized and ready for KVM to use the TDX module APIs for TDX guest
life cycle like tdh.mng.init are ready to use.

Concretely Global initialization, LP (Logical Processor) initialization, global
configuration, the key configuration, and TDMR and PAMT initialization are done.
The state of the TDX module is SYS_READY.  Please refer to the TDX module
specification, the chapter Intel TDX Module Lifecycle State Machine

** Detecting the TDX module readiness.
TDX host patch series implements the detection of the TDX module availability
and its initialization so that KVM can use it.  Also it manages Host KeyID
(HKID) assigned to guest TD.
The assumed APIs the TDX host patch series provides are
- const struct tdsysinfo_struct *tdx_get_sysinfo(void);
  Return the system wide information about the TDX module.  NULL if the TDX
  isn't initialized.
- int tdx_enable(void);
  Initialization of TDX module so that the TDX module is ready for KVM to use.
- extern u32 tdx_global_keyid __read_mostly;
  global host key id that is used for the TDX module itself.
- u32 tdx_get_num_keyid(void);
  return the number of available TDX private host key id.
- int tdx_keyid_alloc(void);
  Allocate HKID for guest TD.
- void tdx_keyid_free(int keyid);
  Free HKID for guest TD.

(****)
* TDX KVM high-level design
- Host key ID management
Host Key ID (HKID) needs to be assigned to each TDX guest for memory encryption.
It is assumed The TDX host patch series implements necessary functions,
u32 tdx_get_global_keyid(void), int tdx_keyid_alloc(void) and,
void tdx_keyid_free(int keyid).

- Data structures and VM type
Because TDX is different from VMX, define its own VM/VCPU structures, struct
kvm_tdx and struct vcpu_tdx instead of struct kvm_vmx and struct vcpu_vmx.  To
identify the VM, introduce VM-type to specify which VM type, VMX (default) or
TDX, is used.

- VM life cycle and TDX specific operations
Re-purpose the existing KVM_MEMORY_ENCRYPT_OP to add TDX specific operations.
New commands are used to get the TDX system parameters, set TDX specific VM/VCPU
parameters, set initial guest memory and measurement.

The creation of TDX VM requires five additional operations in addition to the
conventional VM creation.
  - Get KVM system capability to check if TDX VM type is supported
  - VM creation (KVM_CREATE_VM)
  - New: Get the TDX specific system parameters.  KVM_TDX_GET_CAPABILITY.
  - New: Set TDX specific VM parameters.  KVM_TDX_INIT_VM.
  - VCPU creation (KVM_CREATE_VCPU)
  - New: Set TDX specific VCPU parameters.  KVM_TDX_INIT_VCPU.
  - New: Initialize guest memory as boot state and extend the measurement with
    the memory.  KVM_TDX_INIT_MEM_REGION.
  - New: Finalize VM. KVM_TDX_FINALIZE. Complete measurement of the initial
    TDX VM contents.
  - VCPU RUN (KVM_VCPU_RUN)

- Protected guest state
Because the guest state (CPU state and guest memory) is protected, the KVM VMM
can't operate on them.  For example, accessing CPU registers, injecting
exceptions, and accessing guest memory.  Those operations are handled as
silently ignored, returning zero or initial reset value when it's requested via
KVM API ioctls.

    VM/VCPU state and callbacks for TDX specific operations.
    Define tdx specific VM state and VCPU state instead of VMX ones.  Redirect
    operations to TDX specific callbacks.  "if (tdx) tdx_op() else vmx_op()".

    Operations on the CPU state
    silently ignore operations on the guest state.  For example, the write to
    CPU registers is ignored and the read from CPU registers returns 0.

    . ignore access to CPU registers except for allowed ones.
    . TSC: add a check if tsc is immutable and return an error.  Because the KVM
      implementation updates the internal tsc state and it's difficult to back
      out those changes.  Instead, skip the logic.
    . dirty logging: add check if dirty logging is supported.
    . exceptions/SMI/MCE/SIPI/INIT: silently ignore

    Note: virtual external interrupt and NMI can be injected into TDX guests.

- KVM MMU integration
One bit of the guest physical address (bit 51 or 47) is repurposed to indicate if
the guest physical address is private (the bit is cleared) or shared (the bit is
set).  The bits are called stolen bits.

  - Stolen bits framework
    systematically tracks which guest physical address, shared or private, is
    used.

  - Shared EPT and secure EPT
    There are two EPTs. Shared EPT (the conventional one) and Secure
    EPT(the new one). Shared EPT is handled the same for the stolen
    bit set.  Secure EPT points to private guest pages.  To resolve
    EPT violation, KVM walks one of two EPTs based on faulted GPA.
    Because it's costly to access secure EPT during walking EPTs with
    SEAMCALLs for the private guest physical address, another private
    EPT is used as a shadow of Secure-EPT with the existing logic at
    the cost of extra memory.

The following depicts the relationship.

                    KVM                             |       TDX module
                     |                              |           |
        -------------+----------                    |           |
        |                      |                    |           |
        V                      V                    |           |
     shared GPA           private GPA               |           |
  CPU shared EPT pointer  KVM private EPT pointer   |  CPU secure EPT pointer
        |                      |                    |           |
        |                      |                    |           |
        V                      V                    |           V
  shared EPT                private EPT--------mirror----->Secure EPT
        |                      |                    |           |
        |                      \--------------------+------\    |
        |                                           |      |    |
        V                                           |      V    V
  shared guest page                                 |    private guest page
                                                    |
                                                    |
                              non-encrypted memory  |    encrypted memory
                                                    |

  - Operating on Secure EPT
    Use the TDX module APIs to operate on Secure EPT.  To call the TDX API
    during resolving EPT violation, add hooks to additional operation and wiring
    it to TDX backend.

* References

[1] TDX specification
   https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
[2] Intel Trust Domain Extensions (Intel TDX)
   https://cdrdv2.intel.com/v1/dl/getContent/726790
[3] Intel CPU Architectural Extensions Specification
   https://www.intel.com/content/dam/develop/external/us/en/documents-tps/intel-tdx-cpu-architectural-specification.pdf
[4] Intel TDX Module 1.0 Specification
   https://www.intel.com/content/dam/develop/external/us/en/documents/tdx-module-1.0-public-spec-v0.931.pdf
[5] Intel TDX Loader Interface Specification
  https://www.intel.com/content/dam/develop/external/us/en/documents-tps/intel-tdx-seamldr-interface-specification.pdf
[6] Intel TDX Guest-Hypervisor Communication Interface
   https://cdrdv2.intel.com/v1/dl/getContent/726790
[7] Intel TDX Virtual Firmware Design Guide
   https://www.intel.com/content/dam/develop/external/us/en/documents/tdx-virtual-firmware-design-guide-rev-1.01.pdf
[8] intel public github
   kvm TDX branch: https://github.com/intel/tdx/tree/kvm
   TDX guest branch: https://github.com/intel/tdx/tree/guest
   qemu TDX https://github.com/intel/qemu-tdx
[9] TDVF
    https://github.com/tianocore/edk2-staging/tree/TDVF
    This was merged into EDK2 main branch. https://github.com/tianocore/edk2

Chao Gao (2):
  KVM: x86/mmu: Assume guest MMIOs are shared
  KVM: x86: Allow to update cached values in kvm_user_return_msrs w/o
    wrmsr

Isaku Yamahata (92):
  KVM: x86/vmx: initialize loaded_vmcss_on_cpu in vmx_hardware_setup()
  KVM: x86/vmx: Refactor KVM VMX module init/exit functions
  KVM: VMX: Reorder vmx initialization with kvm vendor initialization
  KVM: TDX: Initialize the TDX module when loading the KVM intel kernel
    module
  KVM: TDX: Add placeholders for TDX VM/vcpu structure
  KVM: TDX: Make TDX VM type supported
  [MARKER] The start of TDX KVM patch series: TDX architectural
    definitions
  KVM: TDX: Define TDX architectural definitions
  KVM: TDX: Add C wrapper functions for SEAMCALLs to the TDX module
  KVM: TDX: Retry SEAMCALL on the lack of entropy error
  KVM: TDX: Add helper functions to print TDX SEAMCALL error
  [MARKER] The start of TDX KVM patch series: TD VM creation/destruction
  x86/cpu: Add helper functions to allocate/free TDX private host key id
  x86/virt/tdx: Add a helper function to return system wide info about
    TDX module
  KVM: TDX: Add place holder for TDX VM specific mem_enc_op ioctl
  KVM: x86, tdx: Make KVM_CAP_MAX_VCPUS backend specific
  KVM: TDX: create/destroy VM structure
  KVM: TDX: initialize VM with TDX specific parameters
  KVM: TDX: Make pmu_intel.c ignore guest TD case
  KVM: TDX: Refuse to unplug the last cpu on the package
  [MARKER] The start of TDX KVM patch series: TD vcpu
    creation/destruction
  KVM: TDX: allocate/free TDX vcpu structure
  KVM: TDX: Do TDX specific vcpu initialization
  [MARKER] The start of TDX KVM patch series: KVM MMU GPA shared bits
  KVM: x86/mmu: introduce config for PRIVATE KVM MMU
  KVM: x86/mmu: Add address conversion functions for TDX shared bit of
    GPA
  [MARKER] The start of TDX KVM patch series: KVM TDP refactoring for
    TDX
  KVM: x86/mmu: Replace hardcoded value 0 for the initial value for SPTE
  KVM: x86/mmu: Add Suppress VE bit to
    shadow_mmio_mask/shadow_present_mask
  KVM: x86/mmu: Track shadow MMIO value on a per-VM basis
  KVM: x86/mmu: Disallow fast page fault on private GPA
  KVM: VMX: Introduce test mode related to EPT violation VE
  [MARKER] The start of TDX KVM patch series: KVM TDP MMU hooks
  KVM: x86/tdp_mmu: Init role member of struct kvm_mmu_page at
    allocation
  KVM: x86/mmu: Add a new is_private member for union kvm_mmu_page_role
  KVM: x86/mmu: Add a private pointer to struct kvm_mmu_page
  KVM: x86/tdp_mmu: Sprinkle __must_check
  KVM: x86/tdp_mmu: Support TDX private mapping for TDP MMU
  [MARKER] The start of TDX KVM patch series: TDX EPT violation
  KVM: TDX: Add accessors VMX VMCS helpers
  KVM: TDX: Require TDP MMU and mmio caching for TDX
  KVM: TDX: TDP MMU TDX support
  KVM: TDX: MTRR: implement get_mt_mask() for TDX
  [MARKER] The start of TDX KVM patch series: TD finalization
  KVM: TDX: Create initial guest memory
  KVM: TDX: Finalize VM initialization
  [MARKER] The start of TDX KVM patch series: TD vcpu enter/exit
  KVM: TDX: Add helper assembly function to TDX vcpu
  KVM: TDX: Implement TDX vcpu enter/exit path
  KVM: TDX: vcpu_run: save/restore host state(host kernel gs)
  KVM: TDX: restore host xsave state when exit from the guest TD
  KVM: TDX: restore user ret MSRs
  [MARKER] The start of TDX KVM patch series: TD vcpu
    exits/interrupts/hypercalls
  KVM: TDX: complete interrupts after tdexit
  KVM: TDX: restore debug store when TD exit
  KVM: TDX: handle vcpu migration over logical processor
  KVM: x86: Add a switch_db_regs flag to handle TDX's auto-switched
    behavior
  KVM: TDX: remove use of struct vcpu_vmx from posted_interrupt.c
  KVM: TDX: Implement interrupt injection
  KVM: TDX: Implements vcpu request_immediate_exit
  KVM: TDX: Implement methods to inject NMI
  KVM: TDX: Add a place holder to handle TDX VM exit
  KVM: TDX: handle EXIT_REASON_OTHER_SMI
  KVM: TDX: handle ept violation/misconfig exit
  KVM: TDX: handle EXCEPTION_NMI and EXTERNAL_INTERRUPT
  KVM: TDX: Handle EXIT_REASON_OTHER_SMI with MSMI
  KVM: TDX: Add a place holder for handler of TDX hypercalls
    (TDG.VP.VMCALL)
  KVM: TDX: handle KVM hypercall with TDG.VP.VMCALL
  KVM: TDX: Add KVM Exit for TDX TDG.VP.VMCALL
  KVM: TDX: Handle TDX PV CPUID hypercall
  KVM: TDX: Handle TDX PV HLT hypercall
  KVM: TDX: Handle TDX PV port io hypercall
  KVM: TDX: Implement callbacks for MSR operations for TDX
  KVM: TDX: Handle TDX PV rdmsr/wrmsr hypercall
  KVM: TDX: Handle MSR MTRRCap and MTRRDefType access
  KVM: TDX: Handle MSR IA32_FEAT_CTL MSR and IA32_MCG_EXT_CTL
  KVM: TDX: Handle TDG.VP.VMCALL<GetTdVmCallInfo> hypercall
  KVM: TDX: Silently discard SMI request
  KVM: TDX: Silently ignore INIT/SIPI
  KVM: TDX: Add methods to ignore accesses to CPU state
  KVM: TDX: Add methods to ignore guest instruction emulation
  KVM: TDX: Add a method to ignore dirty logging
  KVM: TDX: Add methods to ignore VMX preemption timer
  KVM: TDX: Add methods to ignore accesses to TSC
  KVM: TDX: Ignore setting up mce
  KVM: TDX: Add a method to ignore for TDX to ignore hypercall patch
  KVM: TDX: Add methods to ignore virtual apic related operation
  Documentation/virt/kvm: Document on Trust Domain Extensions(TDX)
  KVM: x86: design documentation on TDX support of x86 KVM TDP MMU
  RFC: KVM: x86: Add x86 callback to check cpuid
  RFC: KVM: x86, TDX: Add check for KVM_SET_CPUID2
  [MARKER] the end of (the first phase of) TDX KVM patch series

Sean Christopherson (17):
  KVM: VMX: Move out vmx_x86_ops to 'main.c' to wrap VMX and TDX
  KVM: TDX: Add TDX "architectural" error codes
  KVM: TDX: x86: Add ioctl to get TDX systemwide parameters
  KVM: Allow page-sized MMU caches to be initialized with custom 64-bit
    values
  KVM: x86/mmu: Allow non-zero value for non-present SPTE and removed
    SPTE
  KVM: x86/mmu: Allow per-VM override of the TDP max page level
  KVM: x86/tdp_mmu: Don't zap private pages for unsupported cases
  KVM: VMX: Split out guts of EPT violation to common/exposed function
  KVM: VMX: Move setting of EPT MMU masks to common VT-x code
  KVM: TDX: Add load_mmu_pgd method for TDX
  KVM: x86/mmu: Introduce kvm_mmu_map_tdp_page() for use by TDX
  KVM: TDX: Add support for find pending IRQ in a protected local APIC
  KVM: x86: Assume timer IRQ was injected if APIC state is proteced
  KVM: VMX: Modify NMI and INTR handlers to take intr_info as function
    argument
  KVM: VMX: Move NMI/exception handler to common helper
  KVM: x86: Split core of hypercall emulation to helper function
  KVM: TDX: Handle TDX PV MMIO hypercall

Yan Zhao (1):
  KVM: x86/mmu: TDX: Do not enable page track for TD guest

Yang Weijiang (1):
  KVM: TDX: Add TSX_CTRL msr into uret_msrs list

Yao Yuan (1):
  KVM: TDX: Handle vmentry failure for INTEL TD guest

Yuan Yao (1):
  KVM: TDX: Retry seamcall when TDX_OPERAND_BUSY with operand SEPT

 Documentation/virt/kvm/api.rst             |    9 +-
 Documentation/virt/kvm/index.rst           |    1 +
 Documentation/virt/kvm/x86/index.rst       |    2 +
 Documentation/virt/kvm/x86/intel-tdx.rst   |  362 +++
 Documentation/virt/kvm/x86/tdx-tdp-mmu.rst |  443 +++
 arch/x86/events/intel/ds.c                 |    1 +
 arch/x86/include/asm/kvm-x86-ops.h         |   17 +-
 arch/x86/include/asm/kvm_host.h            |   75 +-
 arch/x86/include/asm/tdx.h                 |   80 +-
 arch/x86/include/asm/vmx.h                 |   14 +
 arch/x86/include/uapi/asm/kvm.h            |   88 +
 arch/x86/include/uapi/asm/vmx.h            |    5 +-
 arch/x86/kvm/Kconfig                       |    6 +
 arch/x86/kvm/Makefile                      |    3 +-
 arch/x86/kvm/cpuid.c                       |   13 +-
 arch/x86/kvm/cpuid.h                       |    2 +
 arch/x86/kvm/irq.c                         |    3 +
 arch/x86/kvm/lapic.c                       |   33 +-
 arch/x86/kvm/lapic.h                       |    2 +
 arch/x86/kvm/mmu.h                         |   31 +
 arch/x86/kvm/mmu/mmu.c                     |  189 +-
 arch/x86/kvm/mmu/mmu_internal.h            |  109 +-
 arch/x86/kvm/mmu/page_track.c              |    3 +
 arch/x86/kvm/mmu/paging_tmpl.h             |    2 +-
 arch/x86/kvm/mmu/spte.c                    |   17 +-
 arch/x86/kvm/mmu/spte.h                    |   27 +-
 arch/x86/kvm/mmu/tdp_iter.h                |   14 +-
 arch/x86/kvm/mmu/tdp_mmu.c                 |  405 ++-
 arch/x86/kvm/mmu/tdp_mmu.h                 |    7 +-
 arch/x86/kvm/smm.h                         |    7 +-
 arch/x86/kvm/svm/svm.c                     |    1 +
 arch/x86/kvm/vmx/common.h                  |  166 ++
 arch/x86/kvm/vmx/main.c                    | 1221 ++++++++
 arch/x86/kvm/vmx/pmu_intel.c               |   46 +-
 arch/x86/kvm/vmx/pmu_intel.h               |   28 +
 arch/x86/kvm/vmx/posted_intr.c             |   43 +-
 arch/x86/kvm/vmx/posted_intr.h             |   13 +
 arch/x86/kvm/vmx/tdx.c                     | 3082 ++++++++++++++++++++
 arch/x86/kvm/vmx/tdx.h                     |  272 ++
 arch/x86/kvm/vmx/tdx_arch.h                |  170 ++
 arch/x86/kvm/vmx/tdx_errno.h               |   41 +
 arch/x86/kvm/vmx/tdx_error.c               |   20 +
 arch/x86/kvm/vmx/tdx_ops.h                 |  245 ++
 arch/x86/kvm/vmx/vmcs.h                    |    5 +
 arch/x86/kvm/vmx/vmenter.S                 |  164 ++
 arch/x86/kvm/vmx/vmx.c                     |  673 ++---
 arch/x86/kvm/vmx/vmx.h                     |   52 +-
 arch/x86/kvm/vmx/x86_ops.h                 |  258 ++
 arch/x86/kvm/x86.c                         |  122 +-
 arch/x86/kvm/x86.h                         |    2 +
 arch/x86/virt/vmx/tdx/seamcall.S           |    2 +
 arch/x86/virt/vmx/tdx/tdx.c                |   53 +-
 arch/x86/virt/vmx/tdx/tdx.h                |   53 -
 include/linux/kvm_host.h                   |    1 +
 include/linux/kvm_types.h                  |    1 +
 include/uapi/linux/kvm.h                   |   87 +
 tools/arch/x86/include/uapi/asm/kvm.h      |   96 +
 virt/kvm/kvm_main.c                        |   31 +-
 58 files changed, 8156 insertions(+), 762 deletions(-)
 create mode 100644 Documentation/virt/kvm/x86/intel-tdx.rst
 create mode 100644 Documentation/virt/kvm/x86/tdx-tdp-mmu.rst
 create mode 100644 arch/x86/kvm/vmx/common.h
 create mode 100644 arch/x86/kvm/vmx/main.c
 create mode 100644 arch/x86/kvm/vmx/pmu_intel.h
 create mode 100644 arch/x86/kvm/vmx/tdx.c
 create mode 100644 arch/x86/kvm/vmx/tdx.h
 create mode 100644 arch/x86/kvm/vmx/tdx_arch.h
 create mode 100644 arch/x86/kvm/vmx/tdx_errno.h
 create mode 100644 arch/x86/kvm/vmx/tdx_error.c
 create mode 100644 arch/x86/kvm/vmx/tdx_ops.h
 create mode 100644 arch/x86/kvm/vmx/x86_ops.h


base-commit: bfa3037d828050896ae52f6467b6ca2489ae6fb1
prerequisite-patch-id: 3bd3037b3803e2d84f0ef98bb6c678be44eddd08
prerequisite-patch-id: b474cbf4f0ea21cf945036271f5286017e0efc84
prerequisite-patch-id: bd96a89fafe51956a55fdfc08a3ea2a37a2e55e4
prerequisite-patch-id: f15d178f9000430e0089c546756ab1d8d29341a7
prerequisite-patch-id: 5b34829d7433fa81ed574d724ee476b9cc2e6a50
prerequisite-patch-id: bf75388851ee37a83b37bfa7cb0084f27301f6bc
prerequisite-patch-id: 9d77fb0e8ce8c8c21e22ff3f26bd168eb5446df0
prerequisite-patch-id: 7152514149d4b4525a0057e3460ff78861e162f5
prerequisite-patch-id: a1d688257a210564ebeb23b1eef4b9ad1f5d7be3
prerequisite-patch-id: 0b1e771c370a03e1588ed97ee77cb0493d9304f4
prerequisite-patch-id: 313219882d617e4d4cb226760d1f071f52b3f882
prerequisite-patch-id: a8ebe373e3913fd0e0a55c57f55690f432975ec0
prerequisite-patch-id: 8b06f2333214e355b145113e33c65ade85d7eac4
prerequisite-patch-id: e739dd58995d35b0f888d02a6bf4ea144476f264
prerequisite-patch-id: 0e93d19cb59f3a052a377a56ff0a4399046818aa
prerequisite-patch-id: 4e0839abbfb8885154e278b4b0071a760199ad46
prerequisite-patch-id: be193bb3393ad8a16ea376a530df20a145145259
prerequisite-patch-id: 301dbdf8448175ea609664c890a3694750ecf740
prerequisite-patch-id: ba8e6068bcef7865bb5523065e19edd49fbc02de
prerequisite-patch-id: 81b25d13169b3617c12992dce85613a2730b0e1b
prerequisite-patch-id: b4526dee5b5a95da0a13116ae0c73d4e69efa3c6
prerequisite-patch-id: 8c62bacc52a75d4a9038a3f597fe436c50e07de3
prerequisite-patch-id: 5618d2414a1ef641b4c247b5e28076f67a765b24
prerequisite-patch-id: 022b4620f6ff729eca842192259e986d126e7fa6
prerequisite-patch-id: 73ebc581a3ce9a51167785d273fe69406ccccaed
prerequisite-patch-id: 1225df90aeae430a74354bc5ad0ddf508d0707db
prerequisite-patch-id: 1e38df398ee370ad7e457f4890d6e4457e8a83fa
prerequisite-patch-id: b8812b613f5674351565ea28354e91a756efd56e
prerequisite-patch-id: e231eff2baba07c2de984dd6cf83ad1a31b792b8
prerequisite-patch-id: 4c3e874f5a81d8faa87f1552c4f66c335e51b10b
prerequisite-patch-id: fa77e23cb08f647a81c8a2d6e15b71d0d9d73d3f
prerequisite-patch-id: 358d933f6d6fafba8fcf363673e4aeaa3175bffa
prerequisite-patch-id: 4b529f51e850c2ae205ccebf06c506a2ceda2352
prerequisite-patch-id: e611ed11739866ed5863c10893447d18f7362793
prerequisite-patch-id: 8d3716956281a5bd4024343c7a6538c635bc4512
prerequisite-patch-id: 5c1099652396c3020b2af559ed2a12cf2725f2fe
prerequisite-patch-id: 554e6bd542b845c1a556f7da4db9c7ac33fe396e
prerequisite-patch-id: 38461b84a4c6292b81a97424f9834f693065c794
prerequisite-patch-id: 5d05b55188360da9737f9cf52a7b888b1393e03f
prerequisite-patch-id: c4b6a6cb6ecd44b4ccb4fd0bd29d3df14ad2df2d
prerequisite-patch-id: 3c93e412ef811eb92d0c9e7442108e57f4c0161d
prerequisite-patch-id: 144982ee3761b30264328bf97f75ad8511c92ef1
prerequisite-patch-id: 2e1bfaa6f636431c64be30567b6ab29612ab667b
prerequisite-patch-id: dbbafc93f22c632974ac4f0f7723dff031f58b44
prerequisite-patch-id: 23844e3aeb137c15225bd1e00e36ff3e28ecf3a4
prerequisite-patch-id: 1df0c588530996d9ed78592aef25a1c28290511d
prerequisite-patch-id: 676e4f00026f36d11a56a09306800f9bbdfdf418
prerequisite-patch-id: c1f6a4380640607966d2574d828e20444fdec82c
prerequisite-patch-id: 2d7d9e53916d8ae7098b81d16c37f8fa36d49ac0
prerequisite-patch-id: 4df02112a774adec078d579304355e665e812c97
prerequisite-patch-id: bf078bcc88a3fa417dcaa3ff284fd9b13dc3c88b
prerequisite-patch-id: 93919b210b5255c8225ba651b64f5a251674dacb
prerequisite-patch-id: 3986d23cd0b46ed5a836d91ff0578b4afd190e39
prerequisite-patch-id: 46449476658cfd8715ff04822508694f64f0e047
prerequisite-patch-id: c0d872fbfe9cf24cb69f93e4d84f39a1fc9cec2d
prerequisite-patch-id: d10a2f5ee80095ddd8ada0a5f524bbc50c2782a9
prerequisite-patch-id: 9612e4f0609b6680bf40c94cbf41f7898b7149b0
prerequisite-patch-id: aa6ebca29f326ee57123b49992584ac1e71cd0c1
prerequisite-patch-id: ebab5bff65b7583b9257849e93b67f71c964630b
prerequisite-patch-id: b0bf2eaba4e53f01e6316780b80cb1e29ac74ee0
prerequisite-patch-id: f4e97d679570433a549ec7c7a9ff87df57adc41c
prerequisite-patch-id: 13625ac5fc2522e74b1c1639ac511206b43256c7
prerequisite-patch-id: be4911c0d255be1706205f3b825630e14dec3398
prerequisite-patch-id: d95adb5a77af86847f0e20fd99f081db3d880827
prerequisite-patch-id: 4dd00540050377ff852c0a939682d5894513444c
-- 
2.25.1




[Index of Archives]     [KVM ARM]     [KVM ia64]     [KVM ppc]     [Virtualization Tools]     [Spice Development]     [Libvirt]     [Libvirt Users]     [Linux USB Devel]     [Linux Audio Users]     [Yosemite Questions]     [Linux Kernel]     [Linux SCSI]     [XFree86]

  Powered by Linux