On Fri, Jul 14, 2023 at 11:52 AM bibo mao <maobibo@xxxxxxxxxxx> wrote: > > > > 在 2023/7/14 11:19, Huacai Chen 写道: > > Hi, Tianrui, > > > > Via offline discussion now I know that the level2_xxx functions are > > used to translate GPA to HPA, but the level2_ prefix is very confusing > > that the first image may be "two level page tables (PMD+PTE, or > > something like that)". > > > > So to make things clear, I think a gpa2hpa_ prefix may be better, and > > if it is too long, we can use g2hpa_. As an alternative, use > > hypervisor_ as the prefix may also be considerable. > yes I agree, level2 is a little confused, how about kvm_ptw_xxx or lvzm_ptw_xxx? kvm_ptw_xxx is OK for me. Huacai > > There is no formal name for LoongArch memory virtualziation, g2hpa can not > represent memory virtualization, and it can be applied to X86 (with prefix tdp_) > and arm64 (with prefix stage2_ ), however each architecture has its own name. > > Regards > Bibo Mao > > > > Huacai > > > > On Thu, Jun 29, 2023 at 3:56 PM Tianrui Zhao <zhaotianrui@xxxxxxxxxxx> wrote: > >> > >> Implement LoongArch kvm mmu, it is used to switch gpa to hpa when > >> guest exit because of address translation exception. This patch > >> implement allocate gpa page table, search gpa from it and flush guest > >> gpa in the table. > >> > >> Reviewed-by: Bibo Mao <maobibo@xxxxxxxxxxx> > >> Signed-off-by: Tianrui Zhao <zhaotianrui@xxxxxxxxxxx> > >> --- > >> arch/loongarch/kvm/mmu.c | 725 +++++++++++++++++++++++++++++++++++++++ > >> 1 file changed, 725 insertions(+) > >> create mode 100644 arch/loongarch/kvm/mmu.c > >> > >> diff --git a/arch/loongarch/kvm/mmu.c b/arch/loongarch/kvm/mmu.c > >> new file mode 100644 > >> index 000000000000..d75446139546 > >> --- /dev/null > >> +++ b/arch/loongarch/kvm/mmu.c > >> @@ -0,0 +1,725 @@ > >> +// SPDX-License-Identifier: GPL-2.0 > >> +/* > >> + * Copyright (C) 2020-2023 Loongson Technology Corporation Limited > >> + */ > >> + > >> +#include <linux/highmem.h> > >> +#include <linux/page-flags.h> > >> +#include <linux/kvm_host.h> > >> +#include <linux/uaccess.h> > >> +#include <asm/mmu_context.h> > >> +#include <asm/pgalloc.h> > >> +#include <asm/tlb.h> > >> + > >> +/* > >> + * KVM_MMU_CACHE_MIN_PAGES is the number of GPA page table translation levels > >> + * for which pages need to be cached. > >> + */ > >> +#define KVM_MMU_CACHE_MIN_PAGES (CONFIG_PGTABLE_LEVELS - 1) > >> + > >> +/** > >> + * kvm_pgd_alloc() - Allocate and initialise a KVM GPA page directory. > >> + * > >> + * Allocate a blank KVM GPA page directory (PGD) for representing guest physical > >> + * to host physical page mappings. > >> + * > >> + * Returns: Pointer to new KVM GPA page directory. > >> + * NULL on allocation failure. > >> + */ > >> +pgd_t *kvm_pgd_alloc(void) > >> +{ > >> + pgd_t *pgd; > >> + > >> + pgd = (pgd_t *)__get_free_pages(GFP_KERNEL, 0); > >> + if (pgd) > >> + pgd_init((void *)pgd); > >> + > >> + return pgd; > >> +} > >> + > >> +/** > >> + * kvm_walk_pgd() - Walk page table with optional allocation. > >> + * @pgd: Page directory pointer. > >> + * @addr: Address to index page table using. > >> + * @cache: MMU page cache to allocate new page tables from, or NULL. > >> + * > >> + * Walk the page tables pointed to by @pgd to find the PTE corresponding to the > >> + * address @addr. If page tables don't exist for @addr, they will be created > >> + * from the MMU cache if @cache is not NULL. > >> + * > >> + * Returns: Pointer to pte_t corresponding to @addr. > >> + * NULL if a page table doesn't exist for @addr and !@cache. > >> + * NULL if a page table allocation failed. > >> + */ > >> +static pte_t *kvm_walk_pgd(pgd_t *pgd, struct kvm_mmu_memory_cache *cache, > >> + unsigned long addr) > >> +{ > >> + p4d_t *p4d; > >> + pud_t *pud; > >> + pmd_t *pmd; > >> + > >> + pgd += pgd_index(addr); > >> + if (pgd_none(*pgd)) { > >> + /* Not used yet */ > >> + BUG(); > >> + return NULL; > >> + } > >> + p4d = p4d_offset(pgd, addr); > >> + pud = pud_offset(p4d, addr); > >> + if (pud_none(*pud)) { > >> + pmd_t *new_pmd; > >> + > >> + if (!cache) > >> + return NULL; > >> + new_pmd = kvm_mmu_memory_cache_alloc(cache); > >> + pmd_init((void *)new_pmd); > >> + pud_populate(NULL, pud, new_pmd); > >> + } > >> + pmd = pmd_offset(pud, addr); > >> + if (pmd_none(*pmd)) { > >> + pte_t *new_pte; > >> + > >> + if (!cache) > >> + return NULL; > >> + new_pte = kvm_mmu_memory_cache_alloc(cache); > >> + clear_page(new_pte); > >> + pmd_populate_kernel(NULL, pmd, new_pte); > >> + } > >> + return pte_offset_kernel(pmd, addr); > >> +} > >> + > >> +/* Caller must hold kvm->mm_lock */ > >> +static pte_t *kvm_pte_for_gpa(struct kvm *kvm, > >> + struct kvm_mmu_memory_cache *cache, > >> + unsigned long addr) > >> +{ > >> + return kvm_walk_pgd(kvm->arch.gpa_mm.pgd, cache, addr); > >> +} > >> + > >> +/* > >> + * level2_flush_{pte,pmd,pud,pgd,pt}. > >> + * Flush a range of guest physical address space from the VM's GPA page tables. > >> + */ > >> +static int level2_flush_pte(pmd_t *pmd, unsigned long addr, unsigned long end) > >> +{ > >> + pte_t *pte; > >> + unsigned long next, start; > >> + int ret; > >> + > >> + ret = 0; > >> + start = addr; > >> + pte = pte_offset_kernel(pmd, addr); > >> + do { > >> + next = addr + PAGE_SIZE; > >> + if (!pte_present(*pte)) > >> + continue; > >> + > >> + set_pte(pte, __pte(0)); > >> + ret = 1; > >> + } while (pte++, addr = next, addr != end); > >> + > >> + if (start + PMD_SIZE == end) { > >> + pte = pte_offset_kernel(pmd, 0); > >> + pmd_clear(pmd); > >> + pte_free_kernel(NULL, pte); > >> + } > >> + return ret; > >> +} > >> + > >> +static int level2_flush_pmd(pud_t *pud, unsigned long addr, unsigned long end) > >> +{ > >> + pmd_t *pmd; > >> + unsigned long next, start; > >> + int ret; > >> + > >> + ret = 0; > >> + start = addr; > >> + pmd = pmd_offset(pud, addr); > >> + do { > >> + next = pmd_addr_end(addr, end); > >> + if (!pmd_present(*pmd)) > >> + continue; > >> + > >> + ret |= level2_flush_pte(pmd, addr, next); > >> + } while (pmd++, addr = next, addr != end); > >> + > >> + if (start + PUD_SIZE == end) { > >> + pmd = pmd_offset(pud, 0); > >> + pud_clear(pud); > >> + pmd_free(NULL, pmd); > >> + } > >> + return ret; > >> +} > >> + > >> +static int level2_flush_pud(pgd_t *pgd, unsigned long addr, unsigned long end) > >> +{ > >> + p4d_t *p4d; > >> + pud_t *pud; > >> + unsigned long next, start; > >> + int ret; > >> + > >> + ret = 0; > >> + start = addr; > >> + p4d = p4d_offset(pgd, addr); > >> + pud = pud_offset(p4d, addr); > >> + do { > >> + next = pud_addr_end(addr, end); > >> + if (!pud_present(*pud)) > >> + continue; > >> + > >> + ret |= level2_flush_pmd(pud, addr, next); > >> + } while (pud++, addr = next, addr != end); > >> + > >> + if (start + PGDIR_SIZE == end) { > >> + pud = pud_offset(p4d, 0); > >> + pgd_clear(pgd); > >> + pud_free(NULL, pud); > >> + } > >> + return ret; > >> +} > >> + > >> +static int level2_flush_pgd(pgd_t *pgd, unsigned long addr, unsigned long end) > >> +{ > >> + unsigned long next; > >> + int ret; > >> + > >> + ret = 0; > >> + if (addr > end - 1) > >> + return ret; > >> + pgd = pgd + pgd_index(addr); > >> + do { > >> + next = pgd_addr_end(addr, end); > >> + if (!pgd_present(*pgd)) > >> + continue; > >> + > >> + ret |= level2_flush_pud(pgd, addr, next); > >> + } while (pgd++, addr = next, addr != end); > >> + > >> + return ret; > >> +} > >> + > >> +/** > >> + * level2_flush_range() - Flush a range of guest physical addresses. > >> + * @kvm: KVM pointer. > >> + * @start_gfn: Guest frame number of first page in GPA range to flush. > >> + * @end_gfn: Guest frame number of last page in GPA range to flush. > >> + * > >> + * Flushes a range of GPA mappings from the GPA page tables. > >> + * > >> + * The caller must hold the @kvm->mmu_lock spinlock. > >> + * > >> + * Returns: Whether its safe to remove the top level page directory because > >> + * all lower levels have been removed. > >> + */ > >> +static bool level2_flush_range(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn) > >> +{ > >> + return level2_flush_pgd(kvm->arch.gpa_mm.pgd, start_gfn << PAGE_SHIFT, > >> + end_gfn << PAGE_SHIFT); > >> +} > >> + > >> +typedef int (*level2_pte_ops)(void *pte); > >> +/* > >> + * level2_mkclean_pte > >> + * Mark a range of guest physical address space clean (writes fault) in the VM's > >> + * GPA page table to allow dirty page tracking. > >> + */ > >> +static int level2_mkclean_pte(void *pte) > >> +{ > >> + pte_t val; > >> + > >> + val = *(pte_t *)pte; > >> + if (pte_dirty(val)) { > >> + *(pte_t *)pte = pte_mkclean(val); > >> + return 1; > >> + } > >> + return 0; > >> +} > >> + > >> +static int level2_ptw_pte(pmd_t *pmd, unsigned long addr, unsigned long end, > >> + level2_pte_ops func) > >> +{ > >> + pte_t *pte; > >> + unsigned long next; > >> + int ret; > >> + > >> + ret = 0; > >> + pte = pte_offset_kernel(pmd, addr); > >> + do { > >> + next = addr + PAGE_SIZE; > >> + if (!pte_present(*pte)) > >> + continue; > >> + > >> + ret |= func(pte); > >> + } while (pte++, addr = next, addr != end); > >> + > >> + return ret; > >> +} > >> + > >> +static int level2_ptw_pmd(pud_t *pud, unsigned long addr, unsigned long end, > >> + level2_pte_ops func) > >> +{ > >> + pmd_t *pmd; > >> + unsigned long next; > >> + int ret; > >> + > >> + ret = 0; > >> + pmd = pmd_offset(pud, addr); > >> + do { > >> + next = pmd_addr_end(addr, end); > >> + if (!pmd_present(*pmd)) > >> + continue; > >> + > >> + ret |= level2_ptw_pte(pmd, addr, next, func); > >> + } while (pmd++, addr = next, addr != end); > >> + > >> + return ret; > >> +} > >> + > >> +static int level2_ptw_pud(pgd_t *pgd, unsigned long addr, unsigned long end, > >> + level2_pte_ops func) > >> +{ > >> + p4d_t *p4d; > >> + pud_t *pud; > >> + unsigned long next; > >> + int ret; > >> + > >> + ret = 0; > >> + p4d = p4d_offset(pgd, addr); > >> + pud = pud_offset(p4d, addr); > >> + do { > >> + next = pud_addr_end(addr, end); > >> + if (!pud_present(*pud)) > >> + continue; > >> + > >> + ret |= level2_ptw_pmd(pud, addr, next, func); > >> + } while (pud++, addr = next, addr != end); > >> + > >> + return ret; > >> +} > >> + > >> +static int level2_ptw_pgd(pgd_t *pgd, unsigned long addr, unsigned long end, > >> + level2_pte_ops func) > >> +{ > >> + unsigned long next; > >> + int ret; > >> + > >> + ret = 0; > >> + if (addr > end - 1) > >> + return ret; > >> + pgd = pgd + pgd_index(addr); > >> + do { > >> + next = pgd_addr_end(addr, end); > >> + if (!pgd_present(*pgd)) > >> + continue; > >> + > >> + ret |= level2_ptw_pud(pgd, addr, next, func); > >> + } while (pgd++, addr = next, addr != end); > >> + > >> + return ret; > >> +} > >> + > >> +/* > >> + * kvm_mkclean_gpa_pt() - Make a range of guest physical addresses clean. > >> + * @kvm: KVM pointer. > >> + * @start_gfn: Guest frame number of first page in GPA range to flush. > >> + * @end_gfn: Guest frame number of last page in GPA range to flush. > >> + * > >> + * Make a range of GPA mappings clean so that guest writes will fault and > >> + * trigger dirty page logging. > >> + * > >> + * The caller must hold the @kvm->mmu_lock spinlock. > >> + * > >> + * Returns: Whether any GPA mappings were modified, which would require > >> + * derived mappings (GVA page tables & TLB enties) to be > >> + * invalidated. > >> + */ > >> +static int kvm_mkclean_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn) > >> +{ > >> + return level2_ptw_pgd(kvm->arch.gpa_mm.pgd, start_gfn << PAGE_SHIFT, > >> + end_gfn << PAGE_SHIFT, level2_mkclean_pte); > >> +} > >> + > >> +/* > >> + * kvm_arch_mmu_enable_log_dirty_pt_masked() - write protect dirty pages > >> + * @kvm: The KVM pointer > >> + * @slot: The memory slot associated with mask > >> + * @gfn_offset: The gfn offset in memory slot > >> + * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory > >> + * slot to be write protected > >> + * > >> + * Walks bits set in mask write protects the associated pte's. Caller must > >> + * acquire @kvm->mmu_lock. > >> + */ > >> +void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, > >> + struct kvm_memory_slot *slot, > >> + gfn_t gfn_offset, unsigned long mask) > >> +{ > >> + gfn_t base_gfn = slot->base_gfn + gfn_offset; > >> + gfn_t start = base_gfn + __ffs(mask); > >> + gfn_t end = base_gfn + __fls(mask) + 1; > >> + > >> + kvm_mkclean_gpa_pt(kvm, start, end); > >> +} > >> + > >> +void kvm_arch_commit_memory_region(struct kvm *kvm, > >> + struct kvm_memory_slot *old, > >> + const struct kvm_memory_slot *new, > >> + enum kvm_mr_change change) > >> +{ > >> + int needs_flush; > >> + > >> + /* > >> + * If dirty page logging is enabled, write protect all pages in the slot > >> + * ready for dirty logging. > >> + * > >> + * There is no need to do this in any of the following cases: > >> + * CREATE: No dirty mappings will already exist. > >> + * MOVE/DELETE: The old mappings will already have been cleaned up by > >> + * kvm_arch_flush_shadow_memslot() > >> + */ > >> + if (change == KVM_MR_FLAGS_ONLY && > >> + (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) && > >> + new->flags & KVM_MEM_LOG_DIRTY_PAGES)) { > >> + spin_lock(&kvm->mmu_lock); > >> + /* Write protect GPA page table entries */ > >> + needs_flush = kvm_mkclean_gpa_pt(kvm, new->base_gfn, > >> + new->base_gfn + new->npages); > >> + if (needs_flush) > >> + kvm_flush_remote_tlbs(kvm); > >> + spin_unlock(&kvm->mmu_lock); > >> + } > >> +} > >> + > >> +void kvm_arch_flush_shadow_all(struct kvm *kvm) > >> +{ > >> + /* Flush whole GPA */ > >> + level2_flush_range(kvm, 0, kvm->arch.gpa_size >> PAGE_SHIFT); > >> + /* Flush vpid for each vCPU individually */ > >> + kvm_flush_remote_tlbs(kvm); > >> +} > >> + > >> +void kvm_arch_flush_shadow_memslot(struct kvm *kvm, > >> + struct kvm_memory_slot *slot) > >> +{ > >> + int ret; > >> + > >> + /* > >> + * The slot has been made invalid (ready for moving or deletion), so we > >> + * need to ensure that it can no longer be accessed by any guest vCPUs. > >> + */ > >> + spin_lock(&kvm->mmu_lock); > >> + /* Flush slot from GPA */ > >> + ret = level2_flush_range(kvm, slot->base_gfn, > >> + slot->base_gfn + slot->npages); > >> + /* Let implementation do the rest */ > >> + if (ret) > >> + kvm_flush_remote_tlbs(kvm); > >> + spin_unlock(&kvm->mmu_lock); > >> +} > >> + > >> +void _kvm_destroy_mm(struct kvm *kvm) > >> +{ > >> + /* It should always be safe to remove after flushing the whole range */ > >> + level2_flush_range(kvm, 0, kvm->arch.gpa_size >> PAGE_SHIFT); > >> + pgd_free(NULL, kvm->arch.gpa_mm.pgd); > >> + kvm->arch.gpa_mm.pgd = NULL; > >> +} > >> + > >> +/* > >> + * Mark a range of guest physical address space old (all accesses fault) in the > >> + * VM's GPA page table to allow detection of commonly used pages. > >> + */ > >> +static int level2_mkold_pte(void *pte) > >> +{ > >> + pte_t val; > >> + > >> + val = *(pte_t *)pte; > >> + if (pte_young(val)) { > >> + *(pte_t *)pte = pte_mkold(val); > >> + return 1; > >> + } > >> + return 0; > >> +} > >> + > >> +bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) > >> +{ > >> + return level2_flush_range(kvm, range->start, range->end); > >> +} > >> + > >> +bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) > >> +{ > >> + gpa_t gpa = range->start << PAGE_SHIFT; > >> + pte_t hva_pte = range->pte; > >> + pte_t *ptep = kvm_pte_for_gpa(kvm, NULL, gpa); > >> + pte_t old_pte; > >> + > >> + if (!ptep) > >> + return false; > >> + > >> + /* Mapping may need adjusting depending on memslot flags */ > >> + old_pte = *ptep; > >> + if (range->slot->flags & KVM_MEM_LOG_DIRTY_PAGES && !pte_dirty(old_pte)) > >> + hva_pte = pte_mkclean(hva_pte); > >> + else if (range->slot->flags & KVM_MEM_READONLY) > >> + hva_pte = pte_wrprotect(hva_pte); > >> + > >> + set_pte(ptep, hva_pte); > >> + > >> + /* Replacing an absent or old page doesn't need flushes */ > >> + if (!pte_present(old_pte) || !pte_young(old_pte)) > >> + return false; > >> + > >> + /* Pages swapped, aged, moved, or cleaned require flushes */ > >> + return !pte_present(hva_pte) || > >> + !pte_young(hva_pte) || > >> + pte_pfn(old_pte) != pte_pfn(hva_pte) || > >> + (pte_dirty(old_pte) && !pte_dirty(hva_pte)); > >> +} > >> + > >> +bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) > >> +{ > >> + return level2_ptw_pgd(kvm->arch.gpa_mm.pgd, range->start << PAGE_SHIFT, > >> + range->end << PAGE_SHIFT, level2_mkold_pte); > >> +} > >> + > >> +bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) > >> +{ > >> + gpa_t gpa = range->start << PAGE_SHIFT; > >> + pte_t *ptep = kvm_pte_for_gpa(kvm, NULL, gpa); > >> + > >> + if (ptep && pte_present(*ptep) && pte_young(*ptep)) > >> + return true; > >> + > >> + return false; > >> +} > >> + > >> +/** > >> + * kvm_map_page_fast() - Fast path GPA fault handler. > >> + * @vcpu: vCPU pointer. > >> + * @gpa: Guest physical address of fault. > >> + * @write: Whether the fault was due to a write. > >> + * > >> + * Perform fast path GPA fault handling, doing all that can be done without > >> + * calling into KVM. This handles marking old pages young (for idle page > >> + * tracking), and dirtying of clean pages (for dirty page logging). > >> + * > >> + * Returns: 0 on success, in which case we can update derived mappings and > >> + * resume guest execution. > >> + * -EFAULT on failure due to absent GPA mapping or write to > >> + * read-only page, in which case KVM must be consulted. > >> + */ > >> +static int kvm_map_page_fast(struct kvm_vcpu *vcpu, unsigned long gpa, > >> + bool write) > >> +{ > >> + struct kvm *kvm = vcpu->kvm; > >> + gfn_t gfn = gpa >> PAGE_SHIFT; > >> + pte_t *ptep; > >> + kvm_pfn_t pfn = 0; > >> + bool pfn_valid = false; > >> + int ret = 0; > >> + > >> + spin_lock(&kvm->mmu_lock); > >> + > >> + /* Fast path - just check GPA page table for an existing entry */ > >> + ptep = kvm_pte_for_gpa(kvm, NULL, gpa); > >> + if (!ptep || !pte_present(*ptep)) { > >> + ret = -EFAULT; > >> + goto out; > >> + } > >> + > >> + /* Track access to pages marked old */ > >> + if (!pte_young(*ptep)) { > >> + set_pte(ptep, pte_mkyoung(*ptep)); > >> + pfn = pte_pfn(*ptep); > >> + pfn_valid = true; > >> + /* call kvm_set_pfn_accessed() after unlock */ > >> + } > >> + if (write && !pte_dirty(*ptep)) { > >> + if (!pte_write(*ptep)) { > >> + ret = -EFAULT; > >> + goto out; > >> + } > >> + > >> + /* Track dirtying of writeable pages */ > >> + set_pte(ptep, pte_mkdirty(*ptep)); > >> + pfn = pte_pfn(*ptep); > >> + mark_page_dirty(kvm, gfn); > >> + kvm_set_pfn_dirty(pfn); > >> + } > >> + > >> +out: > >> + spin_unlock(&kvm->mmu_lock); > >> + if (pfn_valid) > >> + kvm_set_pfn_accessed(pfn); > >> + return ret; > >> +} > >> + > >> +/** > >> + * kvm_map_page() - Map a guest physical page. > >> + * @vcpu: vCPU pointer. > >> + * @gpa: Guest physical address of fault. > >> + * @write: Whether the fault was due to a write. > >> + * > >> + * Handle GPA faults by creating a new GPA mapping (or updating an existing > >> + * one). > >> + * > >> + * This takes care of marking pages young or dirty (idle/dirty page tracking), > >> + * asking KVM for the corresponding PFN, and creating a mapping in the GPA page > >> + * tables. Derived mappings (GVA page tables and TLBs) must be handled by the > >> + * caller. > >> + * > >> + * Returns: 0 on success > >> + * -EFAULT if there is no memory region at @gpa or a write was > >> + * attempted to a read-only memory region. This is usually handled > >> + * as an MMIO access. > >> + */ > >> +static int kvm_map_page(struct kvm_vcpu *vcpu, unsigned long gpa, bool write) > >> +{ > >> + bool writeable; > >> + int srcu_idx, err = 0, retry_no = 0; > >> + unsigned long hva; > >> + unsigned long mmu_seq; > >> + unsigned long prot_bits; > >> + pte_t *ptep, new_pte; > >> + kvm_pfn_t pfn; > >> + gfn_t gfn = gpa >> PAGE_SHIFT; > >> + struct vm_area_struct *vma; > >> + struct kvm *kvm = vcpu->kvm; > >> + struct kvm_memory_slot *memslot; > >> + struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache; > >> + > >> + /* Try the fast path to handle old / clean pages */ > >> + srcu_idx = srcu_read_lock(&kvm->srcu); > >> + err = kvm_map_page_fast(vcpu, gpa, write); > >> + if (!err) > >> + goto out; > >> + > >> + memslot = gfn_to_memslot(kvm, gfn); > >> + hva = gfn_to_hva_memslot_prot(memslot, gfn, &writeable); > >> + if (kvm_is_error_hva(hva) || (write && !writeable)) > >> + goto out; > >> + > >> + mmap_read_lock(current->mm); > >> + vma = find_vma_intersection(current->mm, hva, hva + 1); > >> + if (unlikely(!vma)) { > >> + kvm_err("Failed to find VMA for hva 0x%lx\n", hva); > >> + mmap_read_unlock(current->mm); > >> + err = -EFAULT; > >> + goto out; > >> + } > >> + mmap_read_unlock(current->mm); > >> + > >> + /* We need a minimum of cached pages ready for page table creation */ > >> + err = kvm_mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES); > >> + if (err) > >> + goto out; > >> + > >> +retry: > >> + /* > >> + * Used to check for invalidations in progress, of the pfn that is > >> + * returned by pfn_to_pfn_prot below. > >> + */ > >> + mmu_seq = kvm->mmu_invalidate_seq; > >> + /* > >> + * Ensure the read of mmu_invalidate_seq isn't reordered with PTE reads in > >> + * gfn_to_pfn_prot() (which calls get_user_pages()), so that we don't > >> + * risk the page we get a reference to getting unmapped before we have a > >> + * chance to grab the mmu_lock without mmu_invalidate_retry() noticing. > >> + * > >> + * This smp_rmb() pairs with the effective smp_wmb() of the combination > >> + * of the pte_unmap_unlock() after the PTE is zapped, and the > >> + * spin_lock() in kvm_mmu_invalidate_invalidate_<page|range_end>() before > >> + * mmu_invalidate_seq is incremented. > >> + */ > >> + smp_rmb(); > >> + > >> + /* Slow path - ask KVM core whether we can access this GPA */ > >> + pfn = gfn_to_pfn_prot(kvm, gfn, write, &writeable); > >> + if (is_error_noslot_pfn(pfn)) { > >> + err = -EFAULT; > >> + goto out; > >> + } > >> + > >> + spin_lock(&kvm->mmu_lock); > >> + /* Check if an invalidation has taken place since we got pfn */ > >> + if (mmu_invalidate_retry(kvm, mmu_seq)) { > >> + /* > >> + * This can happen when mappings are changed asynchronously, but > >> + * also synchronously if a COW is triggered by > >> + * gfn_to_pfn_prot(). > >> + */ > >> + spin_unlock(&kvm->mmu_lock); > >> + kvm_set_pfn_accessed(pfn); > >> + kvm_release_pfn_clean(pfn); > >> + if (retry_no > 100) { > >> + retry_no = 0; > >> + schedule(); > >> + } > >> + retry_no++; > >> + goto retry; > >> + } > >> + > >> + /* > >> + * For emulated devices such virtio device, actual cache attribute is > >> + * determined by physical machine. > >> + * For pass through physical device, it should be uncachable > >> + */ > >> + prot_bits = _PAGE_PRESENT | __READABLE; > >> + if (vma->vm_flags & (VM_IO | VM_PFNMAP)) > >> + prot_bits |= _CACHE_SUC; > >> + else > >> + prot_bits |= _CACHE_CC; > >> + > >> + if (writeable) { > >> + prot_bits |= _PAGE_WRITE; > >> + if (write) { > >> + prot_bits |= __WRITEABLE; > >> + mark_page_dirty(kvm, gfn); > >> + kvm_set_pfn_dirty(pfn); > >> + } > >> + } > >> + > >> + /* Ensure page tables are allocated */ > >> + ptep = kvm_pte_for_gpa(kvm, memcache, gpa); > >> + new_pte = pfn_pte(pfn, __pgprot(prot_bits)); > >> + set_pte(ptep, new_pte); > >> + > >> + err = 0; > >> + spin_unlock(&kvm->mmu_lock); > >> + kvm_release_pfn_clean(pfn); > >> + kvm_set_pfn_accessed(pfn); > >> +out: > >> + srcu_read_unlock(&kvm->srcu, srcu_idx); > >> + return err; > >> +} > >> + > >> +int kvm_handle_mm_fault(struct kvm_vcpu *vcpu, unsigned long gpa, bool write) > >> +{ > >> + int ret; > >> + > >> + ret = kvm_map_page(vcpu, gpa, write); > >> + if (ret) > >> + return ret; > >> + > >> + /* Invalidate this entry in the TLB */ > >> + return kvm_flush_tlb_gpa(vcpu, gpa); > >> +} > >> + > >> +void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) > >> +{ > >> + > >> +} > >> + > >> +int kvm_arch_prepare_memory_region(struct kvm *kvm, > >> + const struct kvm_memory_slot *old, > >> + struct kvm_memory_slot *new, > >> + enum kvm_mr_change change) > >> +{ > >> + return 0; > >> +} > >> + > >> +void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, > >> + const struct kvm_memory_slot *memslot) > >> +{ > >> + kvm_flush_remote_tlbs(kvm); > >> +} > >> -- > >> 2.39.1 > >> > >> >