Re: [PATCH v6 09/12] KVM: arm64: Split huge pages when dirty logging is enabled

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



On Tue, 07 Mar 2023 03:45:52 +0000,
Ricardo Koller <ricarkol@xxxxxxxxxx> wrote:
> 
> Split huge pages eagerly when enabling dirty logging. The goal is to
> avoid doing it while faulting on write-protected pages, which
> negatively impacts guest performance.
> 
> A memslot marked for dirty logging is split in 1GB pieces at a time.
> This is in order to release the mmu_lock and give other kernel threads
> the opportunity to run, and also in order to allocate enough pages to
> split a 1GB range worth of huge pages (or a single 1GB huge page).
> Note that these page allocations can fail, so eager page splitting is
> best-effort.  This is not a correctness issue though, as huge pages
> can still be split on write-faults.
> 
> The benefits of eager page splitting are the same as in x86, added
> with commit a3fe5dbda0a4 ("KVM: x86/mmu: Split huge pages mapped by
> the TDP MMU when dirty logging is enabled"). For example, when running
> dirty_log_perf_test with 64 virtual CPUs (Ampere Altra), 1GB per vCPU,
> 50% reads, and 2MB HugeTLB memory, the time it takes vCPUs to access
> all of their memory after dirty logging is enabled decreased by 44%
> from 2.58s to 1.42s.
> 
> Signed-off-by: Ricardo Koller <ricarkol@xxxxxxxxxx>
> Reviewed-by: Shaoqin Huang <shahuang@xxxxxxxxxx>
> ---
>  arch/arm64/kvm/mmu.c | 118 ++++++++++++++++++++++++++++++++++++++++++-
>  1 file changed, 116 insertions(+), 2 deletions(-)
> 
> diff --git a/arch/arm64/kvm/mmu.c b/arch/arm64/kvm/mmu.c
> index 898985b09321..b1b8da5f8b6c 100644
> --- a/arch/arm64/kvm/mmu.c
> +++ b/arch/arm64/kvm/mmu.c
> @@ -31,14 +31,21 @@ static phys_addr_t __ro_after_init hyp_idmap_vector;
>  
>  static unsigned long __ro_after_init io_map_base;
>  
> -static phys_addr_t stage2_range_addr_end(phys_addr_t addr, phys_addr_t end)
> +static phys_addr_t __stage2_range_addr_end(phys_addr_t addr, phys_addr_t end,
> +					   phys_addr_t size)
>  {
> -	phys_addr_t size = kvm_granule_size(KVM_PGTABLE_MIN_BLOCK_LEVEL);
>  	phys_addr_t boundary = ALIGN_DOWN(addr + size, size);
>  
>  	return (boundary - 1 < end - 1) ? boundary : end;
>  }
>  
> +static phys_addr_t stage2_range_addr_end(phys_addr_t addr, phys_addr_t end)
> +{
> +	phys_addr_t size = kvm_granule_size(KVM_PGTABLE_MIN_BLOCK_LEVEL);
> +
> +	return __stage2_range_addr_end(addr, end, size);
> +}
> +
>  /*
>   * Release kvm_mmu_lock periodically if the memory region is large. Otherwise,
>   * we may see kernel panics with CONFIG_DETECT_HUNG_TASK,
> @@ -75,6 +82,77 @@ static int stage2_apply_range(struct kvm_s2_mmu *mmu, phys_addr_t addr,
>  #define stage2_apply_range_resched(mmu, addr, end, fn)			\
>  	stage2_apply_range(mmu, addr, end, fn, true)
>  
> +static bool need_topup_split_page_cache_or_resched(struct kvm *kvm, uint64_t min)

Please don't use the words "page cache", it triggers a painful
Pavlovian reflex. Something like "need_split_memcache_topup_or_reched"
makes me feel less anxious.

> +{
> +	struct kvm_mmu_memory_cache *cache;
> +
> +	if (need_resched() || rwlock_needbreak(&kvm->mmu_lock))
> +		return true;
> +
> +	cache = &kvm->arch.mmu.split_page_cache;
> +	return kvm_mmu_memory_cache_nr_free_objects(cache) < min;
> +}
> +
> +/*
> + * Get the maximum number of page-tables needed to split a range of

nit: page-table pages.

> + * blocks into PAGE_SIZE PTEs. It assumes the range is already mapped
> + * at the PMD level, or at the PUD level if allowed.
> + */
> +static int kvm_mmu_split_nr_page_tables(u64 range)
> +{
> +	int n = 0;
> +
> +	if (KVM_PGTABLE_MIN_BLOCK_LEVEL < 2)
> +		n += DIV_ROUND_UP_ULL(range, PUD_SIZE);
> +	n += DIV_ROUND_UP_ULL(range, PMD_SIZE);
> +	return n;
> +}
> +
> +static int kvm_mmu_split_huge_pages(struct kvm *kvm, phys_addr_t addr,
> +				    phys_addr_t end)
> +{
> +	struct kvm_mmu_memory_cache *cache;
> +	struct kvm_pgtable *pgt;
> +	int ret;
> +	u64 next;
> +	u64 chunk_size = kvm->arch.mmu.split_page_chunk_size;
> +	int cache_capacity = kvm_mmu_split_nr_page_tables(chunk_size);
> +
> +	if (chunk_size == 0)
> +		return 0;
> +
> +	lockdep_assert_held_write(&kvm->mmu_lock);

Please check for the lock being held early, even in the 0-sized chunk
condition.

> +
> +	cache = &kvm->arch.mmu.split_page_cache;
> +
> +	do {
> +		if (need_topup_split_page_cache_or_resched(kvm,
> +							   cache_capacity)) {

Since cache_capacity is stored in the kvm struct, why not just passing
it to the helper function and let it deal with it?

> +			write_unlock(&kvm->mmu_lock);
> +			cond_resched();
> +			/* Eager page splitting is best-effort. */
> +			ret = __kvm_mmu_topup_memory_cache(cache,
> +							   cache_capacity,
> +							   cache_capacity);
> +			write_lock(&kvm->mmu_lock);
> +			if (ret)
> +				break;
> +		}
> +
> +		pgt = kvm->arch.mmu.pgt;
> +		if (!pgt)
> +			return -EINVAL;
> +
> +		next = __stage2_range_addr_end(addr, end, chunk_size);
> +		ret = kvm_pgtable_stage2_split(pgt, addr, next - addr,
> +					       cache, cache_capacity);
> +		if (ret)
> +			break;
> +	} while (addr = next, addr != end);
> +
> +	return ret;
> +}
> +
>  static bool memslot_is_logging(struct kvm_memory_slot *memslot)
>  {
>  	return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
> @@ -773,6 +851,7 @@ int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long t
>  void kvm_uninit_stage2_mmu(struct kvm *kvm)
>  {
>  	kvm_free_stage2_pgd(&kvm->arch.mmu);
> +	kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache);
>  }
>  
>  static void stage2_unmap_memslot(struct kvm *kvm,
> @@ -999,6 +1078,31 @@ static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
>  	stage2_wp_range(&kvm->arch.mmu, start, end);
>  }
>  
> +/**
> + * kvm_mmu_split_memory_region() - split the stage 2 blocks into PAGE_SIZE
> + *				   pages for memory slot
> + * @kvm:	The KVM pointer
> + * @slot:	The memory slot to split
> + *
> + * Acquires kvm->mmu_lock. Called with kvm->slots_lock mutex acquired,
> + * serializing operations for VM memory regions.
> + */
> +static void kvm_mmu_split_memory_region(struct kvm *kvm, int slot)
> +{
> +	struct kvm_memslots *slots = kvm_memslots(kvm);
> +	struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
> +	phys_addr_t start, end;
> +
> +	lockdep_assert_held(&kvm->slots_lock);

You have already accessed the memslots by the time you check for the
lock. Not great.

> +
> +	start = memslot->base_gfn << PAGE_SHIFT;
> +	end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
> +
> +	write_lock(&kvm->mmu_lock);
> +	kvm_mmu_split_huge_pages(kvm, start, end);
> +	write_unlock(&kvm->mmu_lock);
> +}
> +
>  /*
>   * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
>   * dirty pages.
> @@ -1790,6 +1894,16 @@ void kvm_arch_commit_memory_region(struct kvm *kvm,
>  			return;
>  
>  		kvm_mmu_wp_memory_region(kvm, new->id);
> +		kvm_mmu_split_memory_region(kvm, new->id);

Would there be an advantage in merging these two operations somehow?

> +	} else {
> +		/*
> +		 * Free any leftovers from the eager page splitting cache. Do
> +		 * this when deleting, moving, disabling dirty logging, or
> +		 * creating the memslot (a nop). Doing it for deletes makes
> +		 * sure we don't leak memory, and there's no need to keep the
> +		 * cache around for any of the other cases.
> +		 */
> +		kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache);
>  	}
>  }
>  

Thanks,

	M.

-- 
Without deviation from the norm, progress is not possible.



[Index of Archives]     [KVM ARM]     [KVM ia64]     [KVM ppc]     [Virtualization Tools]     [Spice Development]     [Libvirt]     [Libvirt Users]     [Linux USB Devel]     [Linux Audio Users]     [Yosemite Questions]     [Linux Kernel]     [Linux SCSI]     [XFree86]

  Powered by Linux