在 2023/2/28 15:00, Tianrui Zhao 写道: > Implement loongarch kvm mmu, it is used to switch gpa to hpa when > guest exit because of address translation exception. This patch > implement allocate gpa page table, search gpa from it and flush guest > gpa in the table. > > Signed-off-by: Tianrui Zhao <zhaotianrui@xxxxxxxxxxx> > --- > arch/loongarch/kvm/mmu.c | 821 +++++++++++++++++++++++++++++++++++++++ > 1 file changed, 821 insertions(+) > create mode 100644 arch/loongarch/kvm/mmu.c > > diff --git a/arch/loongarch/kvm/mmu.c b/arch/loongarch/kvm/mmu.c > new file mode 100644 > index 000000000000..049824f8e462 > --- /dev/null > +++ b/arch/loongarch/kvm/mmu.c > @@ -0,0 +1,821 @@ > +// SPDX-License-Identifier: GPL-2.0 > +/* > + * Copyright (C) 2020-2023 Loongson Technology Corporation Limited > + */ > + > +#include <linux/highmem.h> > +#include <linux/hugetlb.h> > +#include <linux/page-flags.h> > +#include <linux/kvm_host.h> > +#include <linux/uaccess.h> > +#include <asm/kvm_host.h> > +#include <asm/mmu_context.h> > +#include <asm/pgalloc.h> > +#include <asm/tlb.h> > + > +/* > + * KVM_MMU_CACHE_MIN_PAGES is the number of GPA page table translation levels > + * for which pages need to be cached. > + */ > +#if defined(__PAGETABLE_PMD_FOLDED) > +#define KVM_MMU_CACHE_MIN_PAGES 1 > +#else > +#define KVM_MMU_CACHE_MIN_PAGES 2 > +#endif > + > +/** > + * kvm_pgd_alloc() - Allocate and initialise a KVM GPA page directory. > + * > + * Allocate a blank KVM GPA page directory (PGD) for representing guest physical > + * to host physical page mappings. > + * > + * Returns: Pointer to new KVM GPA page directory. > + * NULL on allocation failure. > + */ > +pgd_t *kvm_pgd_alloc(void) > +{ > + pgd_t *pgd; > + > + pgd = (pgd_t *)__get_free_pages(GFP_KERNEL, 0); > + if (pgd) > + pgd_init((void *)pgd); > + > + return pgd; > +} > + > +/** > + * kvm_walk_pgd() - Walk page table with optional allocation. > + * @pgd: Page directory pointer. > + * @addr: Address to index page table using. > + * @cache: MMU page cache to allocate new page tables from, or NULL. > + * > + * Walk the page tables pointed to by @pgd to find the PTE corresponding to the > + * address @addr. If page tables don't exist for @addr, they will be created > + * from the MMU cache if @cache is not NULL. > + * > + * Returns: Pointer to pte_t corresponding to @addr. > + * NULL if a page table doesn't exist for @addr and !@cache. > + * NULL if a page table allocation failed. > + */ > +static pte_t *kvm_walk_pgd(pgd_t *pgd, struct kvm_mmu_memory_cache *cache, > + unsigned long addr) > +{ > + p4d_t *p4d; > + pud_t *pud; > + pmd_t *pmd; > + > + pgd += pgd_index(addr); > + if (pgd_none(*pgd)) { > + /* Not used yet */ > + BUG(); > + return NULL; > + } > + p4d = p4d_offset(pgd, addr); > + pud = pud_offset(p4d, addr); > + if (pud_none(*pud)) { > + pmd_t *new_pmd; > + > + if (!cache) > + return NULL; > + new_pmd = kvm_mmu_memory_cache_alloc(cache); > + pmd_init((void *)new_pmd); > + pud_populate(NULL, pud, new_pmd); > + } > + pmd = pmd_offset(pud, addr); > + if (pmd_none(*pmd)) { > + pte_t *new_pte; > + > + if (!cache) > + return NULL; > + new_pte = kvm_mmu_memory_cache_alloc(cache); > + clear_page(new_pte); > + pmd_populate_kernel(NULL, pmd, new_pte); > + } > + return pte_offset_kernel(pmd, addr); > +} > + > +/* Caller must hold kvm->mm_lock */ > +static pte_t *kvm_pte_for_gpa(struct kvm *kvm, > + struct kvm_mmu_memory_cache *cache, > + unsigned long addr) > +{ > + return kvm_walk_pgd(kvm->arch.gpa_mm.pgd, cache, addr); > +} > + > +/* > + * kvm_flush_gpa_{pte,pmd,pud,pgd,pt}. > + * Flush a range of guest physical address space from the VM's GPA page tables. > + */ > + > +static bool kvm_flush_gpa_pte(pte_t *pte, unsigned long start_gpa, > + unsigned long end_gpa, unsigned long *data) > +{ > + int i_min = pte_index(start_gpa); > + int i_max = pte_index(end_gpa); > + bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1); > + int i; > + > + for (i = i_min; i <= i_max; ++i) { > + if (!pte_present(pte[i])) > + continue; > + > + set_pte(pte + i, __pte(0)); > + if (data) > + *data += 1; > + } > + return safe_to_remove; > +} > + > +static bool kvm_flush_gpa_pmd(pmd_t *pmd, unsigned long start_gpa, > + unsigned long end_gpa, unsigned long *data) > +{ > + pte_t *pte; > + unsigned long end = ~0ul; > + int i_min = pmd_index(start_gpa); > + int i_max = pmd_index(end_gpa); > + bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1); > + int i; > + > + for (i = i_min; i <= i_max; ++i, start_gpa = 0) { > + if (!pmd_present(pmd[i])) > + continue; > + > + pte = pte_offset_kernel(pmd + i, 0); > + if (i == i_max) > + end = end_gpa; > + > + if (kvm_flush_gpa_pte(pte, start_gpa, end, data)) { > + pmd_clear(pmd + i); > + pte_free_kernel(NULL, pte); > + } else { > + safe_to_remove = false; > + } > + } > + return safe_to_remove; > +} > + > +static bool kvm_flush_gpa_pud(pud_t *pud, unsigned long start_gpa, > + unsigned long end_gpa, unsigned long *data) > +{ > + pmd_t *pmd; > + unsigned long end = ~0ul; > + int i_min = pud_index(start_gpa); > + int i_max = pud_index(end_gpa); > + bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1); > + int i; > + > + for (i = i_min; i <= i_max; ++i, start_gpa = 0) { > + if (!pud_present(pud[i])) > + continue; > + > + pmd = pmd_offset(pud + i, 0); > + if (i == i_max) > + end = end_gpa; > + > + if (kvm_flush_gpa_pmd(pmd, start_gpa, end, data)) { > + pud_clear(pud + i); > + pmd_free(NULL, pmd); > + } else { > + safe_to_remove = false; > + } > + } > + return safe_to_remove; > +} > + > +static bool kvm_flush_gpa_pgd(pgd_t *pgd, unsigned long start_gpa, > + unsigned long end_gpa, unsigned long *data) > +{ > + p4d_t *p4d; > + pud_t *pud; > + unsigned long end = ~0ul; > + int i_min = pgd_index(start_gpa); > + int i_max = pgd_index(end_gpa); > + bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1); > + int i; > + > + for (i = i_min; i <= i_max; ++i, start_gpa = 0) { > + if (!pgd_present(pgd[i])) > + continue; > + > + p4d = p4d_offset(pgd, 0); > + pud = pud_offset(p4d + i, 0); > + if (i == i_max) > + end = end_gpa; > + > + if (kvm_flush_gpa_pud(pud, start_gpa, end, data)) { > + pgd_clear(pgd + i); > + pud_free(NULL, pud); > + } else { > + safe_to_remove = false; > + } > + } > + return safe_to_remove; > +} > + > +/** > + * kvm_flush_gpa_range() - Flush a range of guest physical addresses. > + * @kvm: KVM pointer. > + * @start_gfn: Guest frame number of first page in GPA range to flush. > + * @end_gfn: Guest frame number of last page in GPA range to flush. > + * > + * Flushes a range of GPA mappings from the GPA page tables. > + * > + * The caller must hold the @kvm->mmu_lock spinlock. > + * > + * Returns: Whether its safe to remove the top level page directory because > + * all lower levels have been removed. > + */ > +static bool kvm_flush_gpa_range(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn, void *data) > +{ > + return kvm_flush_gpa_pgd(kvm->arch.gpa_mm.pgd, > + start_gfn << PAGE_SHIFT, > + end_gfn << PAGE_SHIFT, (unsigned long *)data); > +} > + > +/* > + * kvm_mkclean_gpa_pt. > + * Mark a range of guest physical address space clean (writes fault) in the VM's > + * GPA page table to allow dirty page tracking. > + */ > + > +static int kvm_mkclean_pte(pte_t *pte, unsigned long start, unsigned long end) > +{ > + int ret = 0; > + int i_min = pte_index(start); > + int i_max = pte_index(end); > + int i; > + pte_t val; > + > + for (i = i_min; i <= i_max; ++i) { > + val = pte[i]; > + if (pte_present(val) && pte_dirty(val)) { > + set_pte(pte + i, pte_mkclean(val)); > + ret = 1; > + } > + } > + return ret; > +} > + > +static int kvm_mkclean_pmd(pmd_t *pmd, unsigned long start, unsigned long end) > +{ > + int ret = 0; > + pte_t *pte; > + unsigned long cur_end = ~0ul; > + int i_min = pmd_index(start); > + int i_max = pmd_index(end); > + int i; > + > + for (i = i_min; i <= i_max; ++i, start = 0) { > + if (!pmd_present(pmd[i])) > + continue; > + > + pte = pte_offset_kernel(pmd + i, 0); > + if (i == i_max) > + cur_end = end; > + > + ret |= kvm_mkclean_pte(pte, start, cur_end); > + } > + > + return ret; > +} > + > +static int kvm_mkclean_pud(pud_t *pud, unsigned long start, unsigned long end) > +{ > + int ret = 0; > + pmd_t *pmd; > + unsigned long cur_end = ~0ul; > + int i_min = pud_index(start); > + int i_max = pud_index(end); > + int i; > + > + for (i = i_min; i <= i_max; ++i, start = 0) { > + if (!pud_present(pud[i])) > + continue; > + > + pmd = pmd_offset(pud + i, 0); > + if (i == i_max) > + cur_end = end; > + > + ret |= kvm_mkclean_pmd(pmd, start, cur_end); > + } > + return ret; > +} > + > +static int kvm_mkclean_pgd(pgd_t *pgd, unsigned long start, unsigned long end) > +{ > + int ret = 0; > + p4d_t *p4d; > + pud_t *pud; > + unsigned long cur_end = ~0ul; > + int i_min = pgd_index(start); > + int i_max = pgd_index(end); > + int i; > + > + for (i = i_min; i <= i_max; ++i, start = 0) { > + if (!pgd_present(pgd[i])) > + continue; > + > + p4d = p4d_offset(pgd, 0); > + pud = pud_offset(p4d + i, 0); > + if (i == i_max) > + cur_end = end; > + > + ret |= kvm_mkclean_pud(pud, start, cur_end); > + } > + return ret; > +} > + > +/** > + * kvm_mkclean_gpa_pt() - Make a range of guest physical addresses clean. > + * @kvm: KVM pointer. > + * @start_gfn: Guest frame number of first page in GPA range to flush. > + * @end_gfn: Guest frame number of last page in GPA range to flush. > + * > + * Make a range of GPA mappings clean so that guest writes will fault and > + * trigger dirty page logging. > + * > + * The caller must hold the @kvm->mmu_lock spinlock. > + * > + * Returns: Whether any GPA mappings were modified, which would require > + * derived mappings (GVA page tables & TLB enties) to be > + * invalidated. > + */ > +static int kvm_mkclean_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn) > +{ > + return kvm_mkclean_pgd(kvm->arch.gpa_mm.pgd, start_gfn << PAGE_SHIFT, > + end_gfn << PAGE_SHIFT); > +} > + > +/** > + * kvm_arch_mmu_enable_log_dirty_pt_masked() - write protect dirty pages > + * @kvm: The KVM pointer > + * @slot: The memory slot associated with mask > + * @gfn_offset: The gfn offset in memory slot > + * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory > + * slot to be write protected > + * > + * Walks bits set in mask write protects the associated pte's. Caller must > + * acquire @kvm->mmu_lock. > + */ > +void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, > + struct kvm_memory_slot *slot, > + gfn_t gfn_offset, unsigned long mask) > +{ > + gfn_t base_gfn = slot->base_gfn + gfn_offset; > + gfn_t start = base_gfn + __ffs(mask); > + gfn_t end = base_gfn + __fls(mask); > + > + kvm_mkclean_gpa_pt(kvm, start, end); > +} > + > +void kvm_arch_commit_memory_region(struct kvm *kvm, > + struct kvm_memory_slot *old, > + const struct kvm_memory_slot *new, > + enum kvm_mr_change change) > +{ > + int needs_flush; > + > + /* > + * If dirty page logging is enabled, write protect all pages in the slot > + * ready for dirty logging. > + * > + * There is no need to do this in any of the following cases: > + * CREATE: No dirty mappings will already exist. > + * MOVE/DELETE: The old mappings will already have been cleaned up by > + * kvm_arch_flush_shadow_memslot() > + */ > + if (change == KVM_MR_FLAGS_ONLY && > + (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) && > + new->flags & KVM_MEM_LOG_DIRTY_PAGES)) { > + spin_lock(&kvm->mmu_lock); > + /* Write protect GPA page table entries */ > + needs_flush = kvm_mkclean_gpa_pt(kvm, new->base_gfn, > + new->base_gfn + new->npages - 1); > + if (needs_flush) > + kvm_flush_remote_tlbs(kvm); > + spin_unlock(&kvm->mmu_lock); > + } > +} > + > +void kvm_arch_flush_shadow_all(struct kvm *kvm) > +{ > + /* Flush whole GPA */ > + kvm_flush_gpa_range(kvm, 0, ~0UL, NULL); > + /* Flush vpid for each VCPU individually */ > + kvm_flush_remote_tlbs(kvm); > +} > + > +void kvm_arch_flush_shadow_memslot(struct kvm *kvm, > + struct kvm_memory_slot *slot) > +{ > + unsigned long npages; > + > + /* > + * The slot has been made invalid (ready for moving or deletion), so we > + * need to ensure that it can no longer be accessed by any guest VCPUs. > + */ > + > + npages = 0; > + spin_lock(&kvm->mmu_lock); > + /* Flush slot from GPA */ > + kvm_flush_gpa_range(kvm, slot->base_gfn, > + slot->base_gfn + slot->npages - 1, &npages); > + /* Let implementation do the rest */ > + if (npages) > + kvm_flush_remote_tlbs(kvm); > + spin_unlock(&kvm->mmu_lock); > +} > + > +void _kvm_destroy_mm(struct kvm *kvm) > +{ > + /* It should always be safe to remove after flushing the whole range */ > + WARN_ON(!kvm_flush_gpa_range(kvm, 0, ~0UL, NULL)); Only _kvm_destroy_mm cares about return value about function kvm_flush_gpa_range, it always return true since it is flushing the whole range. Can return value of function kvm_flush_gpa_range be defined as void rather than bool? By this way, safe_to_remove can be removed in function kvm_flush_gpa_pgd etc. Regards Bibo, Mao > + pgd_free(NULL, kvm->arch.gpa_mm.pgd); > + kvm->arch.gpa_mm.pgd = NULL; > +} > + > +/* > + * Mark a range of guest physical address space old (all accesses fault) in the > + * VM's GPA page table to allow detection of commonly used pages. > + */ > + > +static int kvm_mkold_pte(pte_t *pte, unsigned long start, unsigned long end) > +{ > + int ret = 0; > + int i_min = pte_index(start); > + int i_max = pte_index(end); > + int i; > + pte_t old, new; > + > + for (i = i_min; i <= i_max; ++i) { > + if (!pte_present(pte[i])) > + continue; > + > + old = pte[i]; > + new = pte_mkold(old); > + if (pte_val(new) == pte_val(old)) > + continue; > + set_pte(pte + i, new); > + ret = 1; > + } > + > + return ret; > +} > + > +static int kvm_mkold_pmd(pmd_t *pmd, unsigned long start, unsigned long end) > +{ > + int ret = 0; > + pte_t *pte; > + unsigned long cur_end = ~0ul; > + int i_min = pmd_index(start); > + int i_max = pmd_index(end); > + int i; > + > + for (i = i_min; i <= i_max; ++i, start = 0) { > + if (!pmd_present(pmd[i])) > + continue; > + > + pte = pte_offset_kernel(pmd + i, 0); > + if (i == i_max) > + cur_end = end; > + > + ret |= kvm_mkold_pte(pte, start, cur_end); > + } > + > + return ret; > +} > + > +static int kvm_mkold_pud(pud_t *pud, unsigned long start, unsigned long end) > +{ > + int ret = 0; > + pmd_t *pmd; > + unsigned long cur_end = ~0ul; > + int i_min = pud_index(start); > + int i_max = pud_index(end); > + int i; > + > + for (i = i_min; i <= i_max; ++i, start = 0) { > + if (!pud_present(pud[i])) > + continue; > + > + pmd = pmd_offset(pud + i, 0); > + if (i == i_max) > + cur_end = end; > + > + ret |= kvm_mkold_pmd(pmd, start, cur_end); > + } > + > + return ret; > +} > + > +static int kvm_mkold_pgd(pgd_t *pgd, unsigned long start, unsigned long end) > +{ > + int ret = 0; > + p4d_t *p4d; > + pud_t *pud; > + unsigned long cur_end = ~0ul; > + int i_min = pgd_index(start); > + int i_max = pgd_index(end); > + int i; > + > + for (i = i_min; i <= i_max; ++i, start = 0) { > + if (!pgd_present(pgd[i])) > + continue; > + > + p4d = p4d_offset(pgd, 0); > + pud = pud_offset(p4d + i, 0); > + if (i == i_max) > + cur_end = end; > + > + ret |= kvm_mkold_pud(pud, start, cur_end); > + } > + > + return ret; > +} > + > +bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) > +{ > + unsigned long npages = 0; > + > + kvm_flush_gpa_range(kvm, range->start, range->end, &npages); > + return npages > 0; > +} > + > +bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) > +{ > + gpa_t gpa = range->start << PAGE_SHIFT; > + pte_t hva_pte = range->pte; > + pte_t *ptep = kvm_pte_for_gpa(kvm, NULL, gpa); > + pte_t old_pte; > + > + if (!ptep) > + return false; > + > + /* Mapping may need adjusting depending on memslot flags */ > + old_pte = *ptep; > + if (range->slot->flags & KVM_MEM_LOG_DIRTY_PAGES && !pte_dirty(old_pte)) > + hva_pte = pte_mkclean(hva_pte); > + else if (range->slot->flags & KVM_MEM_READONLY) > + hva_pte = pte_wrprotect(hva_pte); > + > + set_pte(ptep, hva_pte); > + > + /* Replacing an absent or old page doesn't need flushes */ > + if (!pte_present(old_pte) || !pte_young(old_pte)) > + return false; > + > + /* Pages swapped, aged, moved, or cleaned require flushes */ > + return !pte_present(hva_pte) || > + !pte_young(hva_pte) || > + pte_pfn(old_pte) != pte_pfn(hva_pte) || > + (pte_dirty(old_pte) && !pte_dirty(hva_pte)); > +} > + > +bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) > +{ > + return kvm_mkold_pgd(kvm->arch.gpa_mm.pgd, range->start << PAGE_SHIFT, > + range->end << PAGE_SHIFT); > +} > + > +bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) > +{ > + gpa_t gpa = range->start << PAGE_SHIFT; > + pte_t *ptep = kvm_pte_for_gpa(kvm, NULL, gpa); > + > + if (ptep && pte_present(*ptep) && pte_young(*ptep)) > + return true; > + > + return false; > +} > + > +/** > + * kvm_map_page_fast() - Fast path GPA fault handler. > + * @vcpu: VCPU pointer. > + * @gpa: Guest physical address of fault. > + * @write: Whether the fault was due to a write. > + * > + * Perform fast path GPA fault handling, doing all that can be done without > + * calling into KVM. This handles marking old pages young (for idle page > + * tracking), and dirtying of clean pages (for dirty page logging). > + * > + * Returns: 0 on success, in which case we can update derived mappings and > + * resume guest execution. > + * -EFAULT on failure due to absent GPA mapping or write to > + * read-only page, in which case KVM must be consulted. > + */ > +static int kvm_map_page_fast(struct kvm_vcpu *vcpu, unsigned long gpa, > + bool write) > +{ > + struct kvm *kvm = vcpu->kvm; > + gfn_t gfn = gpa >> PAGE_SHIFT; > + pte_t *ptep; > + kvm_pfn_t pfn = 0; > + bool pfn_valid = false; > + int ret = 0; > + > + spin_lock(&kvm->mmu_lock); > + > + /* Fast path - just check GPA page table for an existing entry */ > + ptep = kvm_pte_for_gpa(kvm, NULL, gpa); > + if (!ptep || !pte_present(*ptep)) { > + ret = -EFAULT; > + goto out; > + } > + > + /* Track access to pages marked old */ > + if (!pte_young(*ptep)) { > + set_pte(ptep, pte_mkyoung(*ptep)); > + pfn = pte_pfn(*ptep); > + pfn_valid = true; > + /* call kvm_set_pfn_accessed() after unlock */ > + } > + if (write && !pte_dirty(*ptep)) { > + if (!pte_write(*ptep)) { > + ret = -EFAULT; > + goto out; > + } > + > + /* Track dirtying of writeable pages */ > + set_pte(ptep, pte_mkdirty(*ptep)); > + pfn = pte_pfn(*ptep); > + mark_page_dirty(kvm, gfn); > + kvm_set_pfn_dirty(pfn); > + } > + > +out: > + spin_unlock(&kvm->mmu_lock); > + if (pfn_valid) > + kvm_set_pfn_accessed(pfn); > + return ret; > +} > + > +/** > + * kvm_map_page() - Map a guest physical page. > + * @vcpu: VCPU pointer. > + * @gpa: Guest physical address of fault. > + * @write: Whether the fault was due to a write. > + * > + * Handle GPA faults by creating a new GPA mapping (or updating an existing > + * one). > + * > + * This takes care of marking pages young or dirty (idle/dirty page tracking), > + * asking KVM for the corresponding PFN, and creating a mapping in the GPA page > + * tables. Derived mappings (GVA page tables and TLBs) must be handled by the > + * caller. > + * > + * Returns: 0 on success > + * -EFAULT if there is no memory region at @gpa or a write was > + * attempted to a read-only memory region. This is usually handled > + * as an MMIO access. > + */ > +static int kvm_map_page(struct kvm_vcpu *vcpu, unsigned long gpa, bool write) > +{ > + bool writeable; > + int srcu_idx, err = 0, retry_no = 0; > + unsigned long hva; > + unsigned long mmu_seq; > + unsigned long prot_bits; > + pte_t *ptep, new_pte; > + kvm_pfn_t pfn; > + gfn_t gfn = gpa >> PAGE_SHIFT; > + struct vm_area_struct *vma; > + struct kvm *kvm = vcpu->kvm; > + struct kvm_memory_slot *memslot; > + struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache; > + > + /* Try the fast path to handle old / clean pages */ > + srcu_idx = srcu_read_lock(&kvm->srcu); > + err = kvm_map_page_fast(vcpu, gpa, write); > + if (!err) > + goto out; > + > + memslot = gfn_to_memslot(kvm, gfn); > + hva = gfn_to_hva_memslot_prot(memslot, gfn, &writeable); > + if (kvm_is_error_hva(hva) || (write && !writeable)) > + goto out; > + > + /* Let's check if we will get back a huge page backed by hugetlbfs */ > + mmap_read_lock(current->mm); > + vma = find_vma_intersection(current->mm, hva, hva + 1); > + if (unlikely(!vma)) { > + kvm_err("Failed to find VMA for hva 0x%lx\n", hva); > + mmap_read_unlock(current->mm); > + err = -EFAULT; > + goto out; > + } > + mmap_read_unlock(current->mm); > + > + /* We need a minimum of cached pages ready for page table creation */ > + err = kvm_mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES); > + if (err) > + goto out; > + > +retry: > + /* > + * Used to check for invalidations in progress, of the pfn that is > + * returned by pfn_to_pfn_prot below. > + */ > + mmu_seq = kvm->mmu_invalidate_seq; > + /* > + * Ensure the read of mmu_invalidate_seq isn't reordered with PTE reads in > + * gfn_to_pfn_prot() (which calls get_user_pages()), so that we don't > + * risk the page we get a reference to getting unmapped before we have a > + * chance to grab the mmu_lock without mmu_invalidate_retry() noticing. > + * > + * This smp_rmb() pairs with the effective smp_wmb() of the combination > + * of the pte_unmap_unlock() after the PTE is zapped, and the > + * spin_lock() in kvm_mmu_invalidate_invalidate_<page|range_end>() before > + * mmu_invalidate_seq is incremented. > + */ > + smp_rmb(); > + > + /* Slow path - ask KVM core whether we can access this GPA */ > + pfn = gfn_to_pfn_prot(kvm, gfn, write, &writeable); > + if (is_error_noslot_pfn(pfn)) { > + err = -EFAULT; > + goto out; > + } > + > + spin_lock(&kvm->mmu_lock); > + /* Check if an invalidation has taken place since we got pfn */ > + if (mmu_invalidate_retry(kvm, mmu_seq)) { > + /* > + * This can happen when mappings are changed asynchronously, but > + * also synchronously if a COW is triggered by > + * gfn_to_pfn_prot(). > + */ > + spin_unlock(&kvm->mmu_lock); > + kvm_set_pfn_accessed(pfn); > + kvm_release_pfn_clean(pfn); > + if (retry_no > 100) { > + retry_no = 0; > + schedule(); > + } > + retry_no++; > + goto retry; > + } > + > + /* > + * For emulated devices such virtio device, actual cache attribute is > + * determined by physical machine. > + * For pass through physical device, it should be uncachable > + */ > + prot_bits = _PAGE_PRESENT | __READABLE; > + if (vma->vm_flags & (VM_IO | VM_PFNMAP)) > + prot_bits |= _CACHE_SUC; > + else > + prot_bits |= _CACHE_CC; > + > + if (writeable) { > + prot_bits |= _PAGE_WRITE; > + if (write) { > + prot_bits |= __WRITEABLE; > + mark_page_dirty(kvm, gfn); > + kvm_set_pfn_dirty(pfn); > + } > + } > + > + /* Ensure page tables are allocated */ > + ptep = kvm_pte_for_gpa(kvm, memcache, gpa); > + new_pte = pfn_pte(pfn, __pgprot(prot_bits)); > + set_pte(ptep, new_pte); > + > + err = 0; > + spin_unlock(&kvm->mmu_lock); > + kvm_release_pfn_clean(pfn); > + kvm_set_pfn_accessed(pfn); > +out: > + srcu_read_unlock(&kvm->srcu, srcu_idx); > + return err; > +} > + > +int kvm_handle_mm_fault(struct kvm_vcpu *vcpu, unsigned long gpa, bool write) > +{ > + int ret; > + > + ret = kvm_map_page(vcpu, gpa, write); > + if (ret) > + return ret; > + > + /* Invalidate this entry in the TLB */ > + return kvm_flush_tlb_gpa(vcpu, gpa); > +} > + > +void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) > +{ > + > +} > + > +int kvm_arch_prepare_memory_region(struct kvm *kvm, > + const struct kvm_memory_slot *old, > + struct kvm_memory_slot *new, > + enum kvm_mr_change change) > +{ > + return 0; > +} > + > +void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, > + const struct kvm_memory_slot *memslot) > +{ > + kvm_flush_remote_tlbs(kvm); > +}