Move conditions in kvm_tdp_mmu_write_spte() to check if an SPTE should be written atomically or not to a separate function. This new function, kvm_tdp_mmu_spte_need_atomic_write(), will be used in future commits to optimize clearing bits in SPTEs. Signed-off-by: Vipin Sharma <vipinsh@xxxxxxxxxx> Reviewed-by: David Matlack <dmatlack@xxxxxxxxxx> Reviewed-by: Ben Gardon <bgardon@xxxxxxxxxx> --- arch/x86/kvm/mmu/tdp_iter.h | 34 ++++++++++++++++++++-------------- 1 file changed, 20 insertions(+), 14 deletions(-) diff --git a/arch/x86/kvm/mmu/tdp_iter.h b/arch/x86/kvm/mmu/tdp_iter.h index f0af385c56e0..c11c5d00b2c1 100644 --- a/arch/x86/kvm/mmu/tdp_iter.h +++ b/arch/x86/kvm/mmu/tdp_iter.h @@ -29,23 +29,29 @@ static inline void __kvm_tdp_mmu_write_spte(tdp_ptep_t sptep, u64 new_spte) WRITE_ONCE(*rcu_dereference(sptep), new_spte); } +/* + * SPTEs must be modified atomically if they are shadow-present, leaf + * SPTEs, and have volatile bits, i.e. has bits that can be set outside + * of mmu_lock. The Writable bit can be set by KVM's fast page fault + * handler, and Accessed and Dirty bits can be set by the CPU. + * + * Note, non-leaf SPTEs do have Accessed bits and those bits are + * technically volatile, but KVM doesn't consume the Accessed bit of + * non-leaf SPTEs, i.e. KVM doesn't care if it clobbers the bit. This + * logic needs to be reassessed if KVM were to use non-leaf Accessed + * bits, e.g. to skip stepping down into child SPTEs when aging SPTEs. + */ +static inline bool kvm_tdp_mmu_spte_need_atomic_write(u64 old_spte, int level) +{ + return is_shadow_present_pte(old_spte) && + is_last_spte(old_spte, level) && + spte_has_volatile_bits(old_spte); +} + static inline u64 kvm_tdp_mmu_write_spte(tdp_ptep_t sptep, u64 old_spte, u64 new_spte, int level) { - /* - * Atomically write the SPTE if it is a shadow-present, leaf SPTE with - * volatile bits, i.e. has bits that can be set outside of mmu_lock. - * The Writable bit can be set by KVM's fast page fault handler, and - * Accessed and Dirty bits can be set by the CPU. - * - * Note, non-leaf SPTEs do have Accessed bits and those bits are - * technically volatile, but KVM doesn't consume the Accessed bit of - * non-leaf SPTEs, i.e. KVM doesn't care if it clobbers the bit. This - * logic needs to be reassessed if KVM were to use non-leaf Accessed - * bits, e.g. to skip stepping down into child SPTEs when aging SPTEs. - */ - if (is_shadow_present_pte(old_spte) && is_last_spte(old_spte, level) && - spte_has_volatile_bits(old_spte)) + if (kvm_tdp_mmu_spte_need_atomic_write(old_spte, level)) return kvm_tdp_mmu_write_spte_atomic(sptep, new_spte); __kvm_tdp_mmu_write_spte(sptep, new_spte); -- 2.39.1.581.gbfd45094c4-goog