Re: [PATCH v2 09/12] KVM: arm64: Split huge pages when dirty logging is enabled

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



On Wed, Feb 8, 2023 at 10:26 PM Gavin Shan <gshan@xxxxxxxxxx> wrote:
>
> Hi Ricardo,
>
> On 2/7/23 3:58 AM, Ricardo Koller wrote:
> > Split huge pages eagerly when enabling dirty logging. The goal is to
> > avoid doing it while faulting on write-protected pages, which
> > negatively impacts guest performance.
> >
> > A memslot marked for dirty logging is split in 1GB pieces at a time.
> > This is in order to release the mmu_lock and give other kernel threads
> > the opportunity to run, and also in order to allocate enough pages to
> > split a 1GB range worth of huge pages (or a single 1GB huge page).
> > Note that these page allocations can fail, so eager page splitting is
> > best-effort.  This is not a correctness issue though, as huge pages
> > can still be split on write-faults.
> >
> > The benefits of eager page splitting are the same as in x86, added
> > with commit a3fe5dbda0a4 ("KVM: x86/mmu: Split huge pages mapped by
> > the TDP MMU when dirty logging is enabled"). For example, when running
> > dirty_log_perf_test with 64 virtual CPUs (Ampere Altra), 1GB per vCPU,
> > 50% reads, and 2MB HugeTLB memory, the time it takes vCPUs to access
> > all of their memory after dirty logging is enabled decreased by 44%
> > from 2.58s to 1.42s.
> >
> > Signed-off-by: Ricardo Koller <ricarkol@xxxxxxxxxx>
> > ---
> >   arch/arm64/include/asm/kvm_host.h |  16 +++++
> >   arch/arm64/kvm/mmu.c              | 113 +++++++++++++++++++++++++++++-
> >   2 files changed, 127 insertions(+), 2 deletions(-)
> >
> > diff --git a/arch/arm64/include/asm/kvm_host.h b/arch/arm64/include/asm/kvm_host.h
> > index a69a815719cf..eab62d8b3ad4 100644
> > --- a/arch/arm64/include/asm/kvm_host.h
> > +++ b/arch/arm64/include/asm/kvm_host.h
> > @@ -154,6 +154,22 @@ struct kvm_s2_mmu {
> >       int __percpu *last_vcpu_ran;
> >
> >   #define KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT      PMD_SIZE
> > +     /*
> > +      * Memory cache used to split
> > +      * KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE worth of huge pages. It
> > +      * is used to allocate stage2 page tables while splitting huge
> > +      * pages. Note that the choice of EAGER_PAGE_SPLIT_CHUNK_SIZE
> > +      * influences both the capacity of the split page cache, and
> > +      * how often KVM reschedules. Be wary of raising CHUNK_SIZE
> > +      * too high.
> > +      *
> > +      * A good heuristic to pick CHUNK_SIZE is that it should be
> > +      * the size of huge-page to be split.
> > +      *
> > +      * Protected by kvm->slots_lock.
> > +      */
> > +     struct kvm_mmu_memory_cache split_page_cache;
> > +     uint64_t split_page_chunk_size;
> >
> >       struct kvm_arch *arch;
> >   };
> > diff --git a/arch/arm64/kvm/mmu.c b/arch/arm64/kvm/mmu.c
> > index e2ada6588017..73f8b3953f6a 100644
> > --- a/arch/arm64/kvm/mmu.c
> > +++ b/arch/arm64/kvm/mmu.c
> > @@ -31,14 +31,21 @@ static phys_addr_t hyp_idmap_vector;
> >
> >   static unsigned long io_map_base;
> >
> > -static phys_addr_t stage2_range_addr_end(phys_addr_t addr, phys_addr_t end)
> > +static phys_addr_t __stage2_range_addr_end(phys_addr_t addr, phys_addr_t end,
> > +                                        phys_addr_t size)
> >   {
> > -     phys_addr_t size = kvm_granule_size(KVM_PGTABLE_MIN_BLOCK_LEVEL);
> >       phys_addr_t boundary = ALIGN_DOWN(addr + size, size);
> >
> >       return (boundary - 1 < end - 1) ? boundary : end;
> >   }
> >
> > +static phys_addr_t stage2_range_addr_end(phys_addr_t addr, phys_addr_t end)
> > +{
> > +     phys_addr_t size = kvm_granule_size(KVM_PGTABLE_MIN_BLOCK_LEVEL);
> > +
> > +     return __stage2_range_addr_end(addr, end, size);
> > +}
> > +
> >   /*
> >    * Release kvm_mmu_lock periodically if the memory region is large. Otherwise,
> >    * we may see kernel panics with CONFIG_DETECT_HUNG_TASK,
> > @@ -71,6 +78,72 @@ static int stage2_apply_range(struct kvm *kvm, phys_addr_t addr,
> >       return ret;
> >   }
> >
> > +static bool need_topup_split_page_cache_or_resched(struct kvm *kvm, uint64_t min)
> > +{
> > +     struct kvm_mmu_memory_cache *cache;
> > +
> > +     if (need_resched() || rwlock_needbreak(&kvm->mmu_lock))
> > +             return true;
> > +
> > +     cache = &kvm->arch.mmu.split_page_cache;
> > +     return kvm_mmu_memory_cache_nr_free_objects(cache) < min;
> > +}
> > +
> > +static int kvm_mmu_split_nr_page_tables(u64 range)
> > +{
> > +     int n = 0;
> > +
> > +     if (KVM_PGTABLE_MIN_BLOCK_LEVEL < 2)
> > +             n += DIV_ROUND_UP_ULL(range, PUD_SIZE);
> > +     n += DIV_ROUND_UP_ULL(range, PMD_SIZE);
> > +     return n;
> > +}
> > +
>
> I think it needs comments to explain how the number of page tables are calculated,
> similar to what have been done for stage2_block_get_nr_page_tables() in pgtable.c

Will add a comment.

>
> > +static int kvm_mmu_split_huge_pages(struct kvm *kvm, phys_addr_t addr,
> > +                                 phys_addr_t end)
> > +{
> > +     struct kvm_mmu_memory_cache *cache;
> > +     struct kvm_pgtable *pgt;
> > +     int ret;
> > +     u64 next;
> > +     u64 chunk_size = kvm->arch.mmu.split_page_chunk_size;
> > +     int cache_capacity = kvm_mmu_split_nr_page_tables(chunk_size);
> > +
> > +     if (chunk_size == 0)
> > +             return 0;
> > +
> > +     lockdep_assert_held_write(&kvm->mmu_lock);
> > +
> > +     cache = &kvm->arch.mmu.split_page_cache;
> > +
> > +     do {
> > +             if (need_topup_split_page_cache_or_resched(kvm,
> > +                                                        cache_capacity)) {
> > +                     write_unlock(&kvm->mmu_lock);
> > +                     cond_resched();
> > +                     /* Eager page splitting is best-effort. */
> > +                     ret = __kvm_mmu_topup_memory_cache(cache,
> > +                                                        cache_capacity,
> > +                                                        cache_capacity);
> > +                     write_lock(&kvm->mmu_lock);
> > +                     if (ret)
> > +                             break;
> > +             }
> > +
> > +             pgt = kvm->arch.mmu.pgt;
> > +             if (!pgt)
> > +                     return -EINVAL;
>
> I don't think the check to see @pgt is existing or not because the VM can't be
> created with its page-table isn't allocated and set in kvm_init_stage2_mmu().

GIven that the lock is released/acquired every chunk, the intent was to check
that the page-table wasn't freed in between.

>
> > +
> > +             next = __stage2_range_addr_end(addr, end, chunk_size);
> > +             ret = kvm_pgtable_stage2_split(pgt, addr, next - addr,
> > +                                            cache, cache_capacity);
> > +             if (ret)
> > +                     break;
> > +     } while (addr = next, addr != end);
> > +
> > +     return ret;
> > +}
> > +
> >   #define stage2_apply_range_resched(kvm, addr, end, fn)                      \
> >       stage2_apply_range(kvm, addr, end, fn, true)
> >
>
> I'm wandering if stage2_apply_range() can be reused to avoid invent another similar
> function. the gap are the granularity and conditions to reschedule.

Will try and see what it looks like and report back.

>
> > @@ -772,6 +845,7 @@ int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long t
> >   void kvm_uninit_stage2_mmu(struct kvm *kvm)
> >   {
> >       kvm_free_stage2_pgd(&kvm->arch.mmu);
> > +     kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache);
> >   }
> >
> >   static void stage2_unmap_memslot(struct kvm *kvm,
> > @@ -999,6 +1073,31 @@ static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
> >       stage2_wp_range(&kvm->arch.mmu, start, end);
> >   }
> >
> > +/**
> > + * kvm_mmu_split_memory_region() - split the stage 2 blocks into PAGE_SIZE
> > + *                              pages for memory slot
> > + * @kvm:     The KVM pointer
> > + * @slot:    The memory slot to split
> > + *
> > + * Acquires kvm->mmu_lock. Called with kvm->slots_lock mutex acquired,
> > + * serializing operations for VM memory regions.
> > + */
> > +static void kvm_mmu_split_memory_region(struct kvm *kvm, int slot)
> > +{
> > +     struct kvm_memslots *slots = kvm_memslots(kvm);
> > +     struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
> > +     phys_addr_t start, end;
> > +
> > +     lockdep_assert_held(&kvm->slots_lock);
> > +
> > +     start = memslot->base_gfn << PAGE_SHIFT;
> > +     end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
> > +
> > +     write_lock(&kvm->mmu_lock);
> > +     kvm_mmu_split_huge_pages(kvm, start, end);
> > +     write_unlock(&kvm->mmu_lock);
> > +}
> > +
> >   /*
> >    * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
> >    * dirty pages.
> > @@ -1790,6 +1889,16 @@ void kvm_arch_commit_memory_region(struct kvm *kvm,
> >                       return;
> >
> >               kvm_mmu_wp_memory_region(kvm, new->id);
> > +             kvm_mmu_split_memory_region(kvm, new->id);
> > +     } else {
> > +             /*
> > +              * Free any leftovers from the eager page splitting cache. Do
> > +              * this when deleting, moving, disabling dirty logging, or
> > +              * creating the memslot (a nop). Doing it for deletes makes
> > +              * sure we don't leak memory, and there's no need to keep the
> > +              * cache around for any of the other cases.
> > +              */
> > +             kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache);
> >       }
> >   }
> >
> >
>
> Thanks,
> Gavin
>



[Index of Archives]     [KVM ARM]     [KVM ia64]     [KVM ppc]     [Virtualization Tools]     [Spice Development]     [Libvirt]     [Libvirt Users]     [Linux USB Devel]     [Linux Audio Users]     [Yosemite Questions]     [Linux Kernel]     [Linux SCSI]     [XFree86]

  Powered by Linux