Split huge pages eagerly when enabling dirty logging. The goal is to avoid doing it while faulting on write-protected pages, which negatively impacts guest performance. A memslot marked for dirty logging is split in 1GB pieces at a time. This is in order to release the mmu_lock and give other kernel threads the opportunity to run, and also in order to allocate enough pages to split a 1GB range worth of huge pages (or a single 1GB huge page). Note that these page allocations can fail, so eager page splitting is best-effort. This is not a correctness issue though, as huge pages can still be split on write-faults. The benefits of eager page splitting are the same as in x86, added with commit a3fe5dbda0a4 ("KVM: x86/mmu: Split huge pages mapped by the TDP MMU when dirty logging is enabled"). For example, when running dirty_log_perf_test with 64 virtual CPUs (Ampere Altra), 1GB per vCPU, 50% reads, and 2MB HugeTLB memory, the time it takes vCPUs to access all of their memory after dirty logging is enabled decreased by 44% from 2.58s to 1.42s. Signed-off-by: Ricardo Koller <ricarkol@xxxxxxxxxx> --- arch/arm64/include/asm/kvm_host.h | 30 ++++++++ arch/arm64/kvm/mmu.c | 110 +++++++++++++++++++++++++++++- 2 files changed, 138 insertions(+), 2 deletions(-) diff --git a/arch/arm64/include/asm/kvm_host.h b/arch/arm64/include/asm/kvm_host.h index 35a159d131b5..6ab37209b1d1 100644 --- a/arch/arm64/include/asm/kvm_host.h +++ b/arch/arm64/include/asm/kvm_host.h @@ -153,6 +153,36 @@ struct kvm_s2_mmu { /* The last vcpu id that ran on each physical CPU */ int __percpu *last_vcpu_ran; + /* + * Memory cache used to split EAGER_PAGE_SPLIT_CHUNK_SIZE worth of huge + * pages. It is used to allocate stage2 page tables while splitting + * huge pages. Its capacity should be EAGER_PAGE_SPLIT_CACHE_CAPACITY. + * Note that the choice of EAGER_PAGE_SPLIT_CHUNK_SIZE influences both + * the capacity of the split page cache (CACHE_CAPACITY), and how often + * KVM reschedules. Be wary of raising CHUNK_SIZE too high. + * + * A good heuristic to pick CHUNK_SIZE is that it should be larger than + * all the available huge-page sizes, and be a multiple of all the + * other ones; for example, 1GB when all the available huge-page sizes + * are (1GB, 2MB, 32MB, 512MB). + * + * CACHE_CAPACITY should have enough pages to cover CHUNK_SIZE; for + * example, 1GB requires the following number of PAGE_SIZE-pages: + * - 512 when using 2MB hugepages with 4KB granules (1GB / 2MB). + * - 513 when using 1GB hugepages with 4KB granules (1 + (1GB / 2MB)). + * - 32 when using 32MB hugepages with 16KB granule (1GB / 32MB). + * - 2 when using 512MB hugepages with 64KB granules (1GB / 512MB). + * CACHE_CAPACITY below assumes the worst case: 1GB hugepages with 4KB + * granules. + * + * Protected by kvm->slots_lock. + */ +#define EAGER_PAGE_SPLIT_CHUNK_SIZE SZ_1G +#define EAGER_PAGE_SPLIT_CACHE_CAPACITY \ + (DIV_ROUND_UP_ULL(EAGER_PAGE_SPLIT_CHUNK_SIZE, SZ_1G) + \ + DIV_ROUND_UP_ULL(EAGER_PAGE_SPLIT_CHUNK_SIZE, SZ_2M)) + struct kvm_mmu_memory_cache split_page_cache; + struct kvm_arch *arch; }; diff --git a/arch/arm64/kvm/mmu.c b/arch/arm64/kvm/mmu.c index 700c5774b50d..41ee330edae3 100644 --- a/arch/arm64/kvm/mmu.c +++ b/arch/arm64/kvm/mmu.c @@ -31,14 +31,24 @@ static phys_addr_t hyp_idmap_vector; static unsigned long io_map_base; -static phys_addr_t stage2_range_addr_end(phys_addr_t addr, phys_addr_t end) +bool __read_mostly eager_page_split = true; +module_param(eager_page_split, bool, 0644); + +static phys_addr_t __stage2_range_addr_end(phys_addr_t addr, phys_addr_t end, + phys_addr_t size) { - phys_addr_t size = kvm_granule_size(KVM_PGTABLE_MIN_BLOCK_LEVEL); phys_addr_t boundary = ALIGN_DOWN(addr + size, size); return (boundary - 1 < end - 1) ? boundary : end; } +static phys_addr_t stage2_range_addr_end(phys_addr_t addr, phys_addr_t end) +{ + phys_addr_t size = kvm_granule_size(KVM_PGTABLE_MIN_BLOCK_LEVEL); + + return __stage2_range_addr_end(addr, end, size); +} + /* * Release kvm_mmu_lock periodically if the memory region is large. Otherwise, * we may see kernel panics with CONFIG_DETECT_HUNG_TASK, @@ -71,6 +81,64 @@ static int stage2_apply_range(struct kvm *kvm, phys_addr_t addr, return ret; } +static inline bool need_topup(struct kvm_mmu_memory_cache *cache, int min) +{ + return kvm_mmu_memory_cache_nr_free_objects(cache) < min; +} + +static bool need_topup_split_page_cache_or_resched(struct kvm *kvm) +{ + struct kvm_mmu_memory_cache *cache; + + if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) + return true; + + cache = &kvm->arch.mmu.split_page_cache; + return need_topup(cache, EAGER_PAGE_SPLIT_CACHE_CAPACITY); +} + +static int kvm_mmu_split_huge_pages(struct kvm *kvm, phys_addr_t addr, + phys_addr_t end) +{ + struct kvm_mmu_memory_cache *cache; + struct kvm_pgtable *pgt; + int ret; + u64 next; + int cache_capacity = EAGER_PAGE_SPLIT_CACHE_CAPACITY; + + lockdep_assert_held_write(&kvm->mmu_lock); + + lockdep_assert_held(&kvm->slots_lock); + + cache = &kvm->arch.mmu.split_page_cache; + + do { + if (need_topup_split_page_cache_or_resched(kvm)) { + write_unlock(&kvm->mmu_lock); + cond_resched(); + /* Eager page splitting is best-effort. */ + ret = __kvm_mmu_topup_memory_cache(cache, + cache_capacity, + cache_capacity); + write_lock(&kvm->mmu_lock); + if (ret) + break; + } + + pgt = kvm->arch.mmu.pgt; + if (!pgt) + return -EINVAL; + + next = __stage2_range_addr_end(addr, end, + EAGER_PAGE_SPLIT_CHUNK_SIZE); + ret = kvm_pgtable_stage2_split(pgt, addr, next - addr, cache); + if (ret) + break; + } while (addr = next, addr != end); + + return ret; +} + #define stage2_apply_range_resched(kvm, addr, end, fn) \ stage2_apply_range(kvm, addr, end, fn, true) @@ -755,6 +823,8 @@ int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long t for_each_possible_cpu(cpu) *per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1; + mmu->split_page_cache.gfp_zero = __GFP_ZERO; + mmu->pgt = pgt; mmu->pgd_phys = __pa(pgt->pgd); return 0; @@ -769,6 +839,7 @@ int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long t void kvm_uninit_stage2_mmu(struct kvm *kvm) { kvm_free_stage2_pgd(&kvm->arch.mmu); + kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache); } static void stage2_unmap_memslot(struct kvm *kvm, @@ -996,6 +1067,29 @@ static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, stage2_wp_range(&kvm->arch.mmu, start, end); } +/** + * kvm_mmu_split_memory_region() - split the stage 2 blocks into PAGE_SIZE + * pages for memory slot + * @kvm: The KVM pointer + * @slot: The memory slot to split + * + * Acquires kvm->mmu_lock. Called with kvm->slots_lock mutex acquired, + * serializing operations for VM memory regions. + */ +static void kvm_mmu_split_memory_region(struct kvm *kvm, int slot) +{ + struct kvm_memslots *slots = kvm_memslots(kvm); + struct kvm_memory_slot *memslot = id_to_memslot(slots, slot); + phys_addr_t start, end; + + start = memslot->base_gfn << PAGE_SHIFT; + end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT; + + write_lock(&kvm->mmu_lock); + kvm_mmu_split_huge_pages(kvm, start, end); + write_unlock(&kvm->mmu_lock); +} + /* * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected * dirty pages. @@ -1783,7 +1877,19 @@ void kvm_arch_commit_memory_region(struct kvm *kvm, if (kvm_dirty_log_manual_protect_and_init_set(kvm)) return; + if (READ_ONCE(eager_page_split)) + kvm_mmu_split_memory_region(kvm, new->id); + kvm_mmu_wp_memory_region(kvm, new->id); + } else { + /* + * Free any leftovers from the eager page splitting cache. Do + * this when deleting, moving, disabling dirty logging, or + * creating the memslot (a nop). Doing it for deletes makes + * sure we don't leak memory, and there's no need to keep the + * cache around for any of the other cases. + */ + kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache); } } -- 2.39.0.314.g84b9a713c41-goog