Drop kvm_gpc_unmap() as it has no users and unclear requirements. The API was added as part of the original gfn_to_pfn_cache support, but its sole usage[*] was never merged. Fold the guts of kvm_gpc_unmap() into the deactivate path and drop the API. Omit acquiring refresh_lock as as concurrent calls to kvm_gpc_deactivate() are not allowed (this is not enforced, e.g. via lockdep. due to it being called during vCPU destruction). If/when temporary unmapping makes a comeback, the desirable behavior is likely to restrict temporary unmapping to vCPU-exclusive mappings and require the vcpu->mutex be held to serialize unmap. Use of the refresh_lock to protect unmapping was somewhat specuatively added by commit 93984f19e7bc ("KVM: Fully serialize gfn=>pfn cache refresh via mutex") to guard against concurrent unmaps, but the primary use case of the temporary unmap, nested virtualization[*], doesn't actually need or want concurrent unmaps. [*] https://lore.kernel.org/all/20211210163625.2886-7-dwmw2@xxxxxxxxxxxxx Signed-off-by: Sean Christopherson <seanjc@xxxxxxxxxx> --- include/linux/kvm_host.h | 12 ----------- virt/kvm/pfncache.c | 44 +++++++++++++++------------------------- 2 files changed, 16 insertions(+), 40 deletions(-) diff --git a/include/linux/kvm_host.h b/include/linux/kvm_host.h index b63d2abbef56..22cf43389954 100644 --- a/include/linux/kvm_host.h +++ b/include/linux/kvm_host.h @@ -1315,18 +1315,6 @@ bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, gpa_t gpa); */ int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, gpa_t gpa); -/** - * kvm_gpc_unmap - temporarily unmap a gfn_to_pfn_cache. - * - * @kvm: pointer to kvm instance. - * @gpc: struct gfn_to_pfn_cache object. - * - * This unmaps the referenced page. The cache is left in the invalid state - * but at least the mapping from GPA to userspace HVA will remain cached - * and can be reused on a subsequent refresh. - */ -void kvm_gpc_unmap(struct kvm *kvm, struct gfn_to_pfn_cache *gpc); - /** * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache. * diff --git a/virt/kvm/pfncache.c b/virt/kvm/pfncache.c index 432b150bd9f1..62b47feed36c 100644 --- a/virt/kvm/pfncache.c +++ b/virt/kvm/pfncache.c @@ -328,33 +328,6 @@ int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, gpa_t gpa) } EXPORT_SYMBOL_GPL(kvm_gpc_refresh); -void kvm_gpc_unmap(struct kvm *kvm, struct gfn_to_pfn_cache *gpc) -{ - void *old_khva; - kvm_pfn_t old_pfn; - - mutex_lock(&gpc->refresh_lock); - write_lock_irq(&gpc->lock); - - gpc->valid = false; - - old_khva = gpc->khva - offset_in_page(gpc->khva); - old_pfn = gpc->pfn; - - /* - * We can leave the GPA → uHVA map cache intact but the PFN - * lookup will need to be redone even for the same page. - */ - gpc->khva = NULL; - gpc->pfn = KVM_PFN_ERR_FAULT; - - write_unlock_irq(&gpc->lock); - mutex_unlock(&gpc->refresh_lock); - - gpc_unmap_khva(old_pfn, old_khva); -} -EXPORT_SYMBOL_GPL(kvm_gpc_unmap); - void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm, struct kvm_vcpu *vcpu, enum pfn_cache_usage usage, unsigned long len) @@ -402,6 +375,8 @@ EXPORT_SYMBOL_GPL(kvm_gpc_activate); void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc) { struct kvm *kvm = gpc->kvm; + kvm_pfn_t old_pfn; + void *old_khva; if (gpc->active) { /* @@ -411,13 +386,26 @@ void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc) */ write_lock_irq(&gpc->lock); gpc->active = false; + gpc->valid = false; + + /* + * Leave the GPA => uHVA cache intact, it's protected by the + * memslot generation. The PFN lookup needs to be redone every + * time as mmu_notifier protection is lost when the cache is + * removed from the VM's gpc_list. + */ + old_khva = gpc->khva - offset_in_page(gpc->khva); + gpc->khva = NULL; + + old_pfn = gpc->pfn; + gpc->pfn = KVM_PFN_ERR_FAULT; write_unlock_irq(&gpc->lock); spin_lock(&kvm->gpc_lock); list_del(&gpc->list); spin_unlock(&kvm->gpc_lock); - kvm_gpc_unmap(kvm, gpc); + gpc_unmap_khva(old_pfn, old_khva); } } EXPORT_SYMBOL_GPL(kvm_gpc_deactivate); -- 2.38.0.413.g74048e4d9e-goog