On Sat, May 21, 2022 at 09:16:52PM +0800, Lai Jiangshan wrote: > From: Lai Jiangshan <jiangshan.ljs@xxxxxxxxxxxx> > > Local shadow pages are shadow pages to hold PDPTEs for 32bit guest or > higher level shadow pages having children local shadow pages when > shadowing nested NPT for 32bit L1 in 64 bit L0. > > Current code use mmu->pae_root, mmu->pml4_root, and mmu->pml5_root to > setup local root page. The initialization code is complex and the root > pages are not associated with struct kvm_mmu_page which causes the code > more complex. > > Add kvm_mmu_alloc_local_shadow_page() and mmu_free_local_root_page() to > allocate and free local shadow pages and prepare for using local > shadow pages to replace current logic and share the most logic with > non-local shadow pages. > > The code is not activated since using_local_root_page() is false in > the place where it is inserted. > > Signed-off-by: Lai Jiangshan <jiangshan.ljs@xxxxxxxxxxxx> > --- > arch/x86/kvm/mmu/mmu.c | 109 ++++++++++++++++++++++++++++++++++++++++- > 1 file changed, 108 insertions(+), 1 deletion(-) > > diff --git a/arch/x86/kvm/mmu/mmu.c b/arch/x86/kvm/mmu/mmu.c > index 240ebe589caf..c941a5931bc3 100644 > --- a/arch/x86/kvm/mmu/mmu.c > +++ b/arch/x86/kvm/mmu/mmu.c > @@ -1764,6 +1764,76 @@ static bool using_local_root_page(struct kvm_mmu *mmu) > return mmu->cpu_role.base.level <= PT32E_ROOT_LEVEL; > } > > +/* > + * Local shadow pages are shadow pages to hold PDPTEs for 32bit guest or higher > + * level shadow pages having children local shadow pages when shadowing nested > + * NPT for 32bit L1 in 64 bit L0. > + * > + * Local shadow pages are often local shadow root pages (or local root pages for > + * short) except when shadowing nested NPT for 32bit L1 in 64 bit L0 which has > + * 2 or 3 levels of local shadow pages on top of non-local shadow pages. > + * > + * Local shadow pages are locally allocated. If the local shadow page's level > + * is PT32E_ROOT_LEVEL, it will use the preallocated mmu->pae_root for its > + * sp->spt. Because sp->spt may need to be put in the 32 bits CR3 (even in > + * x86_64) or decrypted. Using the preallocated one to handle these > + * requirements makes the allocation simpler. > + * > + * Local shadow pages are only visible to local VCPU except through > + * sp->parent_ptes rmap from their children, so they are not in the > + * kvm->arch.active_mmu_pages nor in the hash. > + * > + * And they are neither accounted nor write-protected since they don't shadow a > + * guest page table. > + * > + * Because of above, local shadow pages can not be freed nor zapped like > + * non-local shadow pages. They are freed directly when the local root page > + * is freed, see mmu_free_local_root_page(). > + * > + * Local root page can not be put on mmu->prev_roots because the comparison > + * must use PDPTEs instead of CR3 and mmu->pae_root can not be shared for multi > + * local root pages. > + * > + * Except above limitations, all the other abilities are the same as other > + * shadow page, like link, parent rmap, sync, unsync etc. > + * > + * Local shadow pages can be obsoleted in a little different way other than > + * the non-local shadow pages. When the obsoleting process is done, all the > + * obsoleted non-local shadow pages are unlinked from the local shadow pages > + * by the help of the sp->parent_ptes rmap and the local shadow pages become > + * theoretically valid again except sp->mmu_valid_gen may be still outdated. > + * If there is no other event to cause a VCPU to free the local root page and > + * the VCPU is being preempted by the host during two obsoleting processes, > + * sp->mmu_valid_gen might become valid again and the VCPU can reuse it when > + * the VCPU is back. It is different from the non-local shadow pages which > + * are always freed after obsoleted. > + */ > +static struct kvm_mmu_page * > +kvm_mmu_alloc_local_shadow_page(struct kvm_vcpu *vcpu, union kvm_mmu_page_role role) > +{ > + struct kvm_mmu_page *sp; > + > + sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache); > + sp->gfn = 0; > + sp->role = role; > + /* > + * Use the preallocated mmu->pae_root when the shadow page's > + * level is PT32E_ROOT_LEVEL which may need to be put in the 32 bits > + * CR3 (even in x86_64) or decrypted. The preallocated one is prepared > + * for the requirements. > + */ > + if (role.level == PT32E_ROOT_LEVEL && > + !WARN_ON_ONCE(!vcpu->arch.mmu->pae_root)) > + sp->spt = vcpu->arch.mmu->pae_root; FYI this (and a couple other parts of this series) conflict with Nested MMU Eager Page Splitting, since it uses struct kvm_vcpu in kvm_mmu_get_page(). Hopefully Paolo can queue Nested MMU Eager Page Splitting for 5.20 so you can apply this series on top. I think that'd be simpler than trying to do it the other way around. > + else > + sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache); > + /* sp->gfns is not used for local shadow page */ > + set_page_private(virt_to_page(sp->spt), (unsigned long)sp); > + sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen; > + > + return sp; > +} > + > static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct) > { > struct kvm_mmu_page *sp; > @@ -2121,6 +2191,9 @@ static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu, > if (level <= vcpu->arch.mmu->cpu_role.base.level) > role.passthrough = 0; > > + if (unlikely(level >= PT32E_ROOT_LEVEL && using_local_root_page(vcpu->arch.mmu))) > + return kvm_mmu_alloc_local_shadow_page(vcpu, role); > + > sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]; > for_each_valid_sp(vcpu->kvm, sp, sp_list) { > if (sp->gfn != gfn) { > @@ -3351,6 +3424,37 @@ static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa, > *root_hpa = INVALID_PAGE; > } > > +static void mmu_free_local_root_page(struct kvm *kvm, struct kvm_mmu *mmu) > +{ > + u64 spte = mmu->root.hpa; > + struct kvm_mmu_page *sp = to_shadow_page(spte & PT64_BASE_ADDR_MASK); > + int i; > + > + /* Free level 5 or 4 roots for shadow NPT for 32 bit L1 */ > + while (sp->role.level > PT32E_ROOT_LEVEL) > + { > + spte = sp->spt[0]; > + mmu_page_zap_pte(kvm, sp, sp->spt + 0, NULL); > + free_page((unsigned long)sp->spt); > + kmem_cache_free(mmu_page_header_cache, sp); > + if (!is_shadow_present_pte(spte)) > + return; > + sp = to_shadow_page(spte & PT64_BASE_ADDR_MASK); > + } > + > + if (WARN_ON_ONCE(sp->role.level != PT32E_ROOT_LEVEL)) > + return; > + > + /* Disconnect PAE root from the 4 PAE page directories */ > + for (i = 0; i < 4; i++) > + mmu_page_zap_pte(kvm, sp, sp->spt + i, NULL); > + > + if (sp->spt != mmu->pae_root) > + free_page((unsigned long)sp->spt); > + > + kmem_cache_free(mmu_page_header_cache, sp); > +} > + > /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */ > void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, > ulong roots_to_free) > @@ -3384,7 +3488,10 @@ void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, > > if (free_active_root) { > if (to_shadow_page(mmu->root.hpa)) { > - mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list); > + if (using_local_root_page(mmu)) > + mmu_free_local_root_page(kvm, mmu); > + else > + mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list); > } else if (mmu->pae_root) { > for (i = 0; i < 4; ++i) { > if (!IS_VALID_PAE_ROOT(mmu->pae_root[i])) > -- > 2.19.1.6.gb485710b >