On Fri, Apr 22, 2022, David Matlack wrote: > +static bool need_topup_split_caches_or_resched(struct kvm *kvm) > +{ > + if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) > + return true; > + > + /* > + * In the worst case, SPLIT_DESC_CACHE_CAPACITY descriptors are needed > + * to split a single huge page. Calculating how many are actually needed > + * is possible but not worth the complexity. > + */ > + return need_topup(&kvm->arch.split_desc_cache, SPLIT_DESC_CACHE_CAPACITY) || > + need_topup(&kvm->arch.split_page_header_cache, 1) || > + need_topup(&kvm->arch.split_shadow_page_cache, 1); Uber nit that Paolo will make fun of me for... please align indentiation return need_topup(&kvm->arch.split_desc_cache, SPLIT_DESC_CACHE_CAPACITY) || need_topup(&kvm->arch.split_page_header_cache, 1) || need_topup(&kvm->arch.split_shadow_page_cache, 1); > +static void nested_mmu_split_huge_page(struct kvm *kvm, > + const struct kvm_memory_slot *slot, > + u64 *huge_sptep) > + > +{ > + struct kvm_mmu_memory_cache *cache = &kvm->arch.split_desc_cache; > + u64 huge_spte = READ_ONCE(*huge_sptep); > + struct kvm_mmu_page *sp; > + bool flush = false; > + u64 *sptep, spte; > + gfn_t gfn; > + int index; > + > + sp = nested_mmu_get_sp_for_split(kvm, huge_sptep); > + > + for (index = 0; index < PT64_ENT_PER_PAGE; index++) { > + sptep = &sp->spt[index]; > + gfn = kvm_mmu_page_get_gfn(sp, index); > + > + /* > + * The SP may already have populated SPTEs, e.g. if this huge > + * page is aliased by multiple sptes with the same access > + * permissions. These entries are guaranteed to map the same > + * gfn-to-pfn translation since the SP is direct, so no need to > + * modify them. > + * > + * However, if a given SPTE points to a lower level page table, > + * that lower level page table may only be partially populated. > + * Installing such SPTEs would effectively unmap a potion of the > + * huge page, which requires a TLB flush. Maybe explain why a TLB flush is required? E.g. "which requires a TLB flush as a subsequent mmu_notifier event on the unmapped region would fail to detect the need to flush". > +static bool nested_mmu_skip_split_huge_page(u64 *huge_sptep) "skip" is kinda odd terminology. It reads like a command, but it's actually querying state _and_ it's returning a boolean, which I've learned to hate :-) I don't see any reason for a helper, there's one caller and it can just do "continue" directly. > +static void kvm_nested_mmu_try_split_huge_pages(struct kvm *kvm, > + const struct kvm_memory_slot *slot, > + gfn_t start, gfn_t end, > + int target_level) > +{ > + int level; > + > + /* > + * Split huge pages starting with KVM_MAX_HUGEPAGE_LEVEL and working > + * down to the target level. This ensures pages are recursively split > + * all the way to the target level. There's no need to split pages > + * already at the target level. > + */ > + for (level = KVM_MAX_HUGEPAGE_LEVEL; level > target_level; level--) { Unnecessary braces. > + slot_handle_level_range(kvm, slot, > + nested_mmu_try_split_huge_pages, > + level, level, start, end - 1, > + true, false); IMO it's worth running over by 4 chars to drop 2 lines: for (level = KVM_MAX_HUGEPAGE_LEVEL; level > target_level; level--) slot_handle_level_range(kvm, slot, nested_mmu_try_split_huge_pages, level, level, start, end - 1, true, false); > + } > +} > + > /* Must be called with the mmu_lock held in write-mode. */ Add a lockdep assertion, not a comment. > void kvm_mmu_try_split_huge_pages(struct kvm *kvm, > const struct kvm_memory_slot *memslot, > u64 start, u64 end, > int target_level) > { > - if (is_tdp_mmu_enabled(kvm)) > - kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, > - target_level, false); > + if (!is_tdp_mmu_enabled(kvm)) > + return; > + > + kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, > + false); > + > + if (kvm_memslots_have_rmaps(kvm)) > + kvm_nested_mmu_try_split_huge_pages(kvm, memslot, start, end, > + target_level); > > /* > * A TLB flush is unnecessary at this point for the same resons as in > @@ -6051,10 +6304,19 @@ void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm, > u64 start = memslot->base_gfn; > u64 end = start + memslot->npages; > > - if (is_tdp_mmu_enabled(kvm)) { > - read_lock(&kvm->mmu_lock); > - kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true); > - read_unlock(&kvm->mmu_lock); > + if (!is_tdp_mmu_enabled(kvm)) > + return; > + > + read_lock(&kvm->mmu_lock); > + kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, > + true); Eh, let this poke out. > + read_unlock(&kvm->mmu_lock); > + > + if (kvm_memslots_have_rmaps(kvm)) { > + write_lock(&kvm->mmu_lock); > + kvm_nested_mmu_try_split_huge_pages(kvm, memslot, start, end, > + target_level); > + write_unlock(&kvm->mmu_lock); Super duper nit: all other flows do rmaps first, than TDP MMU. Might as well keep that ordering here, otherwise it suggests there's a reason to be different. > } > > /* > diff --git a/arch/x86/kvm/x86.c b/arch/x86/kvm/x86.c > index ab336f7c82e4..e123e24a130f 100644 > --- a/arch/x86/kvm/x86.c > +++ b/arch/x86/kvm/x86.c > @@ -12161,6 +12161,12 @@ static void kvm_mmu_slot_apply_flags(struct kvm *kvm, > * page faults will create the large-page sptes. > */ > kvm_mmu_zap_collapsible_sptes(kvm, new); > + > + /* > + * Free any memory left behind by eager page splitting. Ignore > + * the module parameter since userspace might have changed it. > + */ > + free_split_caches(kvm); > } else { > /* > * Initially-all-set does not require write protecting any page, > -- > 2.36.0.rc2.479.g8af0fa9b8e-goog >