Currently, HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST{,EX} calls are handled the exact same way as HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE{,EX}: by flushing the whole VPID and this is sub-optimal. Switch to handling these requests with 'flush_tlb_gva()' hooks instead. Use the newly introduced TLB flush ring to queue the requests. Signed-off-by: Vitaly Kuznetsov <vkuznets@xxxxxxxxxx> --- arch/x86/kvm/hyperv.c | 141 ++++++++++++++++++++++++++++++++++++------ 1 file changed, 121 insertions(+), 20 deletions(-) diff --git a/arch/x86/kvm/hyperv.c b/arch/x86/kvm/hyperv.c index 81c44e0eadf9..a54d41656f30 100644 --- a/arch/x86/kvm/hyperv.c +++ b/arch/x86/kvm/hyperv.c @@ -1792,6 +1792,35 @@ static u64 kvm_get_sparse_vp_set(struct kvm *kvm, struct kvm_hv_hcall *hc, var_cnt * sizeof(*sparse_banks)); } +static int kvm_hv_get_tlbflush_entries(struct kvm *kvm, struct kvm_hv_hcall *hc, u64 entries[], + u32 data_offset, int consumed_xmm_halves) +{ + int i; + + if (hc->fast) { + /* + * Each XMM holds two entries, but do not count halves that + * have already been consumed. + */ + if (hc->rep_cnt > (2 * HV_HYPERCALL_MAX_XMM_REGISTERS - consumed_xmm_halves)) + return -EINVAL; + + for (i = 0; i < hc->rep_cnt; i++) { + int j = i + consumed_xmm_halves; + + if (j % 2) + entries[i] = sse128_hi(hc->xmm[j / 2]); + else + entries[i] = sse128_lo(hc->xmm[j / 2]); + } + + return 0; + } + + return kvm_read_guest(kvm, hc->ingpa + data_offset, + entries, hc->rep_cnt * sizeof(entries[0])); +} + static inline int hv_tlb_flush_ring_free(struct kvm_vcpu_hv *hv_vcpu, int read_idx, int write_idx) { @@ -1801,12 +1830,14 @@ static inline int hv_tlb_flush_ring_free(struct kvm_vcpu_hv *hv_vcpu, return read_idx - write_idx - 1; } -static void hv_tlb_flush_ring_enqueue(struct kvm_vcpu *vcpu) +static void hv_tlb_flush_ring_enqueue(struct kvm_vcpu *vcpu, bool flush_all, + u64 *entries, int count) { struct kvm_vcpu_hv_tlbflush_ring *tlb_flush_ring; struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); int ring_free, write_idx, read_idx; unsigned long flags; + int i; if (!hv_vcpu) return; @@ -1823,14 +1854,34 @@ static void hv_tlb_flush_ring_enqueue(struct kvm_vcpu *vcpu) if (!ring_free) goto out_unlock; - tlb_flush_ring->entries[write_idx].addr = 0; - tlb_flush_ring->entries[write_idx].flush_all = 1; /* - * Advance write index only after filling in the entry to - * synchronize with lockless reader. + * All entries should fit on the ring leaving one free for 'flush all' + * entry in case another request comes in. In case there's not enough + * space, just put 'flush all' entry there. + */ + if (!count || count >= ring_free - 1 || flush_all) { + tlb_flush_ring->entries[write_idx].addr = 0; + tlb_flush_ring->entries[write_idx].flush_all = 1; + /* + * Advance write index only after filling in the entry to + * synchronize with lockless reader. + */ + smp_wmb(); + tlb_flush_ring->write_idx = (write_idx + 1) % KVM_HV_TLB_FLUSH_RING_SIZE; + goto out_unlock; + } + + for (i = 0; i < count; i++) { + tlb_flush_ring->entries[write_idx].addr = entries[i]; + tlb_flush_ring->entries[write_idx].flush_all = 0; + write_idx = (write_idx + 1) % KVM_HV_TLB_FLUSH_RING_SIZE; + } + /* + * Advance write index only after filling in the entry to synchronize + * with lockless reader. */ smp_wmb(); - tlb_flush_ring->write_idx = (write_idx + 1) % KVM_HV_TLB_FLUSH_RING_SIZE; + tlb_flush_ring->write_idx = write_idx; out_unlock: spin_unlock_irqrestore(&tlb_flush_ring->write_lock, flags); @@ -1840,15 +1891,47 @@ void kvm_hv_vcpu_flush_tlb(struct kvm_vcpu *vcpu) { struct kvm_vcpu_hv_tlbflush_ring *tlb_flush_ring; struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); - - kvm_vcpu_flush_tlb_guest(vcpu); - - if (!hv_vcpu) + struct kvm_vcpu_hv_tlbflush_entry *entry; + int read_idx, write_idx; + u64 address; + u32 count; + int i, j; + + if (!tdp_enabled || !hv_vcpu) { + kvm_vcpu_flush_tlb_guest(vcpu); return; + } tlb_flush_ring = &hv_vcpu->tlb_flush_ring; + read_idx = READ_ONCE(tlb_flush_ring->read_idx); + write_idx = READ_ONCE(tlb_flush_ring->write_idx); + + /* Pairs with smp_wmb() in hv_tlb_flush_ring_enqueue() */ + smp_rmb(); - tlb_flush_ring->read_idx = tlb_flush_ring->write_idx; + for (i = read_idx; i != write_idx; i = (i + 1) % KVM_HV_TLB_FLUSH_RING_SIZE) { + entry = &tlb_flush_ring->entries[i]; + + if (entry->flush_all) + goto out_flush_all; + + /* + * Lower 12 bits of 'address' encode the number of additional + * pages to flush. + */ + address = entry->addr & PAGE_MASK; + count = (entry->addr & ~PAGE_MASK) + 1; + for (j = 0; j < count; j++) + static_call(kvm_x86_flush_tlb_gva)(vcpu, address + j * PAGE_SIZE); + } + ++vcpu->stat.tlb_flush; + goto out_empty_ring; + +out_flush_all: + kvm_vcpu_flush_tlb_guest(vcpu); + +out_empty_ring: + tlb_flush_ring->read_idx = write_idx; } static u64 kvm_hv_flush_tlb(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc) @@ -1857,12 +1940,13 @@ static u64 kvm_hv_flush_tlb(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc) struct hv_tlb_flush_ex flush_ex; struct hv_tlb_flush flush; DECLARE_BITMAP(vcpu_mask, KVM_MAX_VCPUS); + u64 entries[KVM_HV_TLB_FLUSH_RING_SIZE - 2]; u64 valid_bank_mask; u64 sparse_banks[KVM_HV_MAX_SPARSE_VCPU_SET_BITS]; struct kvm_vcpu *v; unsigned long i; - bool all_cpus; - + bool all_cpus, all_addr; + int data_offset = 0, consumed_xmm_halves = 0; /* * The Hyper-V TLFS doesn't allow more than 64 sparse banks, e.g. the * valid mask is a u64. Fail the build if KVM's max allowed number of @@ -1877,10 +1961,12 @@ static u64 kvm_hv_flush_tlb(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc) flush.address_space = hc->ingpa; flush.flags = hc->outgpa; flush.processor_mask = sse128_lo(hc->xmm[0]); + consumed_xmm_halves = 1; } else { if (unlikely(kvm_read_guest(kvm, hc->ingpa, &flush, sizeof(flush)))) return HV_STATUS_INVALID_HYPERCALL_INPUT; + data_offset = sizeof(flush); } trace_kvm_hv_flush_tlb(flush.processor_mask, @@ -1904,10 +1990,12 @@ static u64 kvm_hv_flush_tlb(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc) flush_ex.flags = hc->outgpa; memcpy(&flush_ex.hv_vp_set, &hc->xmm[0], sizeof(hc->xmm[0])); + consumed_xmm_halves = 2; } else { if (unlikely(kvm_read_guest(kvm, hc->ingpa, &flush_ex, sizeof(flush_ex)))) return HV_STATUS_INVALID_HYPERCALL_INPUT; + data_offset = sizeof(flush_ex); } trace_kvm_hv_flush_tlb_ex(flush_ex.hv_vp_set.valid_bank_mask, @@ -1923,25 +2011,38 @@ static u64 kvm_hv_flush_tlb(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc) return HV_STATUS_INVALID_HYPERCALL_INPUT; if (all_cpus) - goto do_flush; + goto read_flush_entries; if (!hc->var_cnt) goto ret_success; - if (kvm_get_sparse_vp_set(kvm, hc, 2, sparse_banks, - offsetof(struct hv_tlb_flush_ex, - hv_vp_set.bank_contents))) + if (kvm_get_sparse_vp_set(kvm, hc, consumed_xmm_halves, + sparse_banks, data_offset)) + return HV_STATUS_INVALID_HYPERCALL_INPUT; + data_offset += hc->var_cnt * sizeof(sparse_banks[0]); + consumed_xmm_halves += hc->var_cnt; + } + +read_flush_entries: + if (hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE || + hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX || + hc->rep_cnt > (KVM_HV_TLB_FLUSH_RING_SIZE - 2)) { + all_addr = true; + } else { + if (kvm_hv_get_tlbflush_entries(kvm, hc, entries, + data_offset, consumed_xmm_halves)) return HV_STATUS_INVALID_HYPERCALL_INPUT; + all_addr = false; } -do_flush: + /* * vcpu->arch.cr3 may not be up-to-date for running vCPUs so we can't * analyze it here, flush TLB regardless of the specified address space. */ if (all_cpus) { kvm_for_each_vcpu(i, v, kvm) - hv_tlb_flush_ring_enqueue(v); + hv_tlb_flush_ring_enqueue(v, all_addr, entries, hc->rep_cnt); kvm_make_all_cpus_request(kvm, KVM_REQ_HV_TLB_FLUSH); } else { @@ -1951,7 +2052,7 @@ static u64 kvm_hv_flush_tlb(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc) v = kvm_get_vcpu(kvm, i); if (!v) continue; - hv_tlb_flush_ring_enqueue(v); + hv_tlb_flush_ring_enqueue(v, all_addr, entries, hc->rep_cnt); } kvm_make_vcpus_request_mask(kvm, KVM_REQ_HV_TLB_FLUSH, vcpu_mask); -- 2.35.1