[PATCH 0/6] TDX KVM preparation patches

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



From: Isaku Yamahata <isaku.yamahata@xxxxxxxxx>

This patch series is preparation patches for x86 VMX KVM which was split out
from TDX KVM patch series [1].  They mostly don't depend on tdx host patches
[2] and those patches can be easily cherry-picked.

Changes from [1]
- split out from [1].
- updated based on review.
- reorder the patches for easy cherry picking,  mostly don't depend on tdx host
  patch series [2].

[1] https://lore.kernel.org/kvm/cover.1646422845.git.isaku.yamahata@xxxxxxxxx/
[2] https://lore.kernel.org/kvm/cover.1647167475.git.kai.huang@xxxxxxxxx/

Thanks,


* What's TDX?
TDX stands for Trust Domain Extensions, which extends Intel Virtual Machines
Extensions (VMX) to introduce a kind of virtual machine guest called a Trust
Domain (TD) for confidential computing.

A TD runs in a CPU mode that is designed to protect the confidentiality of its
memory contents and its CPU state from any other software, including the hosting
Virtual Machine Monitor (VMM), unless explicitly shared by the TD itself.

We have more detailed explanations below (***).
We have the high-level design of TDX KVM below (****).

In this patch series, we use "TD" or "guest TD" to differentiate it from the
current "VM" (Virtual Machine), which is supported by KVM today.

Whole patches are available at
https://github.com/intel/tdx/releases/tag/kvm-upstream
The corresponding patches to qemu are available at
https://github.com/intel/qemu-tdx/commits/tdx-upstream

(***)
* TDX module
A CPU-attested software module called the "TDX module" is designed to implement
the TDX architecture, and it is loaded by the UEFI firmware today. It can be
loaded by the kernel or driver at runtime, but in this patch series we assume
that the TDX module is already loaded and initialized.

The TDX module provides two main new logical modes of operation built upon the
new SEAM (Secure Arbitration Mode) root and non-root CPU modes added to the VMX
architecture. TDX root mode is mostly identical to the VMX root operation mode,
and the TDX functions (described later) are triggered by the new SEAMCALL
instruction with the desired interface function selected by an input operand
(leaf number, in RAX). TDX non-root mode is used for TD guest operation.  TDX
non-root operation (i.e. "guest TD" mode) is similar to the VMX non-root
operation (i.e. guest VM), with changes and restrictions to better assure that
no other software or hardware has direct visibility of the TD memory and state.

TDX transitions between TDX root operation and TDX non-root operation include TD
Entries, from TDX root to TDX non-root mode, and TD Exits from TDX non-root to
TDX root mode.  A TD Exit might be asynchronous, triggered by some external
event (e.g., external interrupt or SMI) or an exception, or it might be
synchronous, triggered by a TDCALL (TDG.VP.VMCALL) function.

TD VCPUs can be entered using SEAMCALL(TDH.VP.ENTER) by KVM. TDH.VP.ENTER is one
of the TDX interface functions as mentioned above, and "TDH" stands for Trust
Domain Host. Those host-side TDX interface functions are categorized into
various areas just for better organization, such as SYS (TDX module management),
MNG (TD management), VP (VCPU), PHYSMEM (physical memory), MEM (private memory),
etc. For example, SEAMCALL(TDH.SYS.INFO) returns the TDX module information.

TDCS (Trust Domain Control Structure) is the main control structure of a guest
TD, and encrypted (using the guest TD's ephemeral private key).  At a high
level, TDCS holds information for controlling TD operation as a whole,
execution, EPTP, MSR bitmaps, etc that KVM needs to set it up.  Note that MSR
bitmaps are held as part of TDCS (unlike VMX) because they are meant to have the
same value for all VCPUs of the same TD.

Trust Domain Virtual Processor State (TDVPS) is the root control structure of a
TD VCPU.  It helps the TDX module control the operation of the VCPU, and holds
the VCPU state while the VCPU is not running. TDVPS is opaque to software and
DMA access, accessible only by using the TDX module interface functions (such as
TDH.VP.RD, TDH.VP.WR). TDVPS includes TD VMCS, and TD VMCS auxiliary structures,
such as virtual APIC page, virtualization exception information, etc.

Several VMX control structures (such as Shared EPT and Posted interrupt
descriptor) are directly managed and accessed by the host VMM.  These control
structures are pointed to by fields in the TD VMCS.

The above means that 1) KVM needs to allocate different data structures for TDs,
2) KVM can reuse the existing code for TDs for some operations, 3) it needs to
define TD-specific handling for others.  3) Redirect operations to .  3)
Redirect operations to the TDX specific callbacks, like "if (is_td_vcpu(vcpu))
tdx_callback() else vmx_callback();".

*TD Private Memory
TD private memory is designed to hold TD private content, encrypted by the CPU
using the TD ephemeral key. An encryption engine holds a table of encryption
keys, and an encryption key is selected for each memory transaction based on a
Host Key Identifier (HKID). By design, the host VMM does not have access to the
encryption keys.

In the first generation of MKTME, HKID is "stolen" from the physical address by
allocating a configurable number of bits from the top of the physical
address. The HKID space is partitioned into shared HKIDs for legacy MKTME
accesses and private HKIDs for SEAM-mode-only accesses. We use 0 for the shared
HKID on the host so that MKTME can be opaque or bypassed on the host.

During TDX non-root operation (i.e. guest TD), memory accesses can be qualified
as either shared or private, based on the value of a new SHARED bit in the Guest
Physical Address (GPA).  The CPU translates shared GPAs using the usual VMX EPT
(Extended Page Table) or "Shared EPT" (in this document), which resides in host
VMM memory. The Shared EPT is directly managed by the host VMM - the same as
with the current VMX. Since guest TDs usually require I/O, and the data exchange
needs to be done via shared memory, thus KVM needs to use the current EPT
functionality even for TDs.

* Secure EPT and Minoring using the TDP code
The CPU translates private GPAs using a separate Secure EPT.  The Secure EPT
pages are encrypted and integrity-protected with the TD's ephemeral private
key.  Secure EPT can be managed _indirectly_ by the host VMM, using the TDX
interface functions, and thus conceptually Secure EPT is a subset of EPT (why
"subset"). Since execution of such interface functions takes much longer time
than accessing memory directly, in KVM we use the existing TDP code to minor the
Secure EPT for the TD.

This way, we can effectively walk Secure EPT without using the TDX interface
functions.

* VM life cycle and TDX specific operations
The userspace VMM, such as QEMU, needs to build and treat TDs differently.  For
example, a TD needs to boot in private memory, and the host software cannot copy
the initial image to private memory.

* TSC Virtualization
The TDX module helps TDs maintain reliable TSC (Time Stamp Counter) values
(e.g. consistent among the TD VCPUs) and the virtual TSC frequency is determined
by TD configuration, i.e. when the TD is created, not per VCPU.  The current KVM
owns TSC virtualization for VMs, but the TDX module does for TDs.

* MCE support for TDs
The TDX module doesn't allow VMM to inject MCE.  Instead PV way is needed for TD
to communicate with VMM.  For now, KVM silently ignores MCE request by VMM.  MSRs
related to MCE (e.g, MCE bank registers) can be naturally emulated by
paravirtualizing MSR access.

[1] For details, the specifications, [2], [3], [4], [5], [6], [7], are
available.

(****)
* TDX KVM high-level design
- Host key ID management
Host Key ID (HKID) needs to be assigned to each TDX guest for memory encryption.
It is assumed The TDX host patch series implements necessary functions,
u32 tdx_get_global_keyid(void), int tdx_keyid_alloc(void) and,
void tdx_keyid_free(int keyid).

- Data structures and VM type
Because TDX is different from VMX, define its own VM/VCPU structures, struct
kvm_tdx and struct vcpu_tdx instead of struct kvm_vmx and struct vcpu_vmx.  To
identify the VM, introduce VM-type to specify which VM type, VMX (default) or
TDX, is used.

- VM life cycle and TDX specific operations
Re-purpose the existing KVM_MEMORY_ENCRYPT_OP to add TDX specific operations.
New commands are used to get the TDX system parameters, set TDX specific VM/VCPU
parameters, set initial guest memory and measurement.

The creation of TDX VM requires five additional operations in addition to the
conventional VM creation.
  - Get KVM system capability to check if TDX VM type is supported
  - VM creation (KVM_CREATE_VM)
  - New: Get the TDX specific system parameters.  KVM_TDX_GET_CAPABILITY.
  - New: Set TDX specific VM parameters.  KVM_TDX_INIT_VM.
  - VCPU creation (KVM_CREATE_VCPU)
  - New: Set TDX specific VCPU parameters.  KVM_TDX_INIT_VCPU.
  - New: Initialize guest memory as boot state and extend the measurement with
    the memory.  KVM_TDX_INIT_MEM_REGION.
  - New: Finalize VM. KVM_TDX_FINALIZE. Complete measurement of the initial
    TDX VM contents.
  - VCPU RUN (KVM_VCPU_RUN)

- Protected guest state
Because the guest state (CPU state and guest memory) is protected, the KVM VMM
can't operate on them.  For example, accessing CPU registers, injecting
exceptions, and accessing guest memory.  Those operations are handled as
silently ignored, returning zero or initial reset value when it's requested via
KVM API ioctls.

    VM/VCPU state and callbacks for TDX specific operations.
    Define tdx specific VM state and VCPU state instead of VMX ones.  Redirect
    operations to TDX specific callbacks.  "if (tdx) tdx_op() else vmx_op()".

    Operations on the CPU state
    silently ignore operations on the guest state.  For example, the write to
    CPU registers is ignored and the read from CPU registers returns 0.

    . ignore access to CPU registers except for allowed ones.
    . TSC: add a check if tsc is immutable and return an error.  Because the KVM
      implementation updates the internal tsc state and it's difficult to back
      out those changes.  Instead, skip the logic.
    . dirty logging: add check if dirty logging is supported.
    . exceptions/SMI/MCE/SIPI/INIT: silently ignore

    Note: virtual external interrupt and NMI can be injected into TDX guests.

- KVM MMU integration
One bit of the guest physical address (bit 51 or 47) is repurposed to indicate if
the guest physical address is private (the bit is cleared) or shared (the bit is
set).  The bits are called stolen bits.

  - Stolen bits framework
    systematically tracks which guest physical address, shared or private, is
    used.

  - Shared EPT and secure EPT
    There are two EPTs. Shared EPT (the conventional one) and Secure
    EPT(the new one). Shared EPT is handled the same for the stolen
    bit set.  Secure EPT points to private guest pages.  To resolve
    EPT violation, KVM walks one of two EPTs based on faulted GPA.
    Because it's costly to access secure EPT during walking EPTs with
    SEAMCALLs for the private guest physical address, another private
    EPT is used as a shadow of Secure-EPT with the existing logic at
    the cost of extra memory.

The following depicts the relationship.

                    KVM                             |       TDX module
                     |                              |           |
        -------------+----------                    |           |
        |                      |                    |           |
        V                      V                    |           |
     shared GPA           private GPA               |           |
  CPU shared EPT pointer  KVM private EPT pointer   |  CPU secure EPT pointer
        |                      |                    |           |
        |                      |                    |           |
        V                      V                    |           V
  shared EPT                private EPT<-------mirror----->Secure EPT
        |                      |                    |           |
        |                      \--------------------+------\    |
        |                                           |      |    |
        V                                           |      V    V
  shared guest page                                 |    private guest page
                                                    |
                                                    |
                              non-encrypted memory  |    encrypted memory
                                                    |

  - Operating on Secure EPT
    Use the TDX module APIs to operate on Secure EPT.  To call the TDX API
    during resolving EPT violation, add hooks to additional operation and wiring
    it to TDX backend.

* References

[1] TDX specification
   https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-extensions.html
[2] Intel Trust Domain Extensions (Intel TDX)
   https://software.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-final9-17.pdf
[3] Intel CPU Architectural Extensions Specification
   https://software.intel.com/content/dam/develop/external/us/en/documents-tps/intel-tdx-cpu-architectural-specification.pdf
[4] Intel TDX Module 1.0 EAS
   https://software.intel.com/content/dam/develop/external/us/en/documents/tdx-module-1eas-v0.85.039.pdf
[5] Intel TDX Loader Interface Specification
  https://software.intel.com/content/dam/develop/external/us/en/documents-tps/intel-tdx-seamldr-interface-specification.pdf
[6] Intel TDX Guest-Hypervisor Communication Interface
   https://software.intel.com/content/dam/develop/external/us/en/documents/intel-tdx-guest-hypervisor-communication-interface.pdf
[7] Intel TDX Virtual Firmware Design Guide
   https://software.intel.com/content/dam/develop/external/us/en/documents/tdx-virtual-firmware-design-guide-rev-1.pdf
[8] intel public github
   kvm TDX branch: https://github.com/intel/tdx/tree/kvm
   TDX guest branch: https://github.com/intel/tdx/tree/guest
   qemu TDX https://github.com/intel/qemu-tdx
[9] TDVF
    https://github.com/tianocore/edk2-staging/tree/TDVF

Isaku Yamahata (3):
  KVM: x86: Refactor KVM VMX module init/exit functions
  KVM: TDX: Add placeholders for TDX VM/vcpu structure
  KVM: TDX: Make TDX VM type supported

Sean Christopherson (3):
  KVM: Enable hardware before doing arch VM initialization
  KVM: VMX: Move out vmx_x86_ops to 'main.c' to wrap VMX and TDX
  KVM: x86: Introduce vm_type to differentiate default VMs from
    confidential VMs

 Documentation/virt/kvm/api.rst        |  15 +
 arch/x86/include/asm/kvm-x86-ops.h    |   1 +
 arch/x86/include/asm/kvm_host.h       |   2 +
 arch/x86/include/uapi/asm/kvm.h       |   3 +
 arch/x86/kvm/Kconfig                  |  14 +
 arch/x86/kvm/Makefile                 |   3 +-
 arch/x86/kvm/svm/svm.c                |   6 +
 arch/x86/kvm/vmx/main.c               | 199 ++++++++++++
 arch/x86/kvm/vmx/tdx.c                |  17 +
 arch/x86/kvm/vmx/tdx.h                |  50 +++
 arch/x86/kvm/vmx/vmx.c                | 450 +++++++++-----------------
 arch/x86/kvm/vmx/x86_ops.h            | 135 ++++++++
 arch/x86/kvm/x86.c                    |   9 +-
 include/uapi/linux/kvm.h              |   1 +
 tools/arch/x86/include/uapi/asm/kvm.h |   3 +
 tools/include/uapi/linux/kvm.h        |   1 +
 virt/kvm/kvm_main.c                   |  14 +-
 17 files changed, 611 insertions(+), 312 deletions(-)
 create mode 100644 arch/x86/kvm/vmx/main.c
 create mode 100644 arch/x86/kvm/vmx/tdx.c
 create mode 100644 arch/x86/kvm/vmx/tdx.h
 create mode 100644 arch/x86/kvm/vmx/x86_ops.h

-- 
2.25.1




[Index of Archives]     [KVM ARM]     [KVM ia64]     [KVM ppc]     [Virtualization Tools]     [Spice Development]     [Libvirt]     [Libvirt Users]     [Linux USB Devel]     [Linux Audio Users]     [Yosemite Questions]     [Linux Kernel]     [Linux SCSI]     [XFree86]

  Powered by Linux