Hi, On Fri, Jan 28, 2022 at 12:18:48PM +0000, Marc Zyngier wrote: > From: Jintack Lim <jintack.lim@xxxxxxxxxx> > > When supporting nested virtualization a guest hypervisor executing AT > instructions must be trapped and emulated by the host hypervisor, > because untrapped AT instructions operating on S1E1 will use the wrong > translation regieme (the one used to emulate virtual EL2 in EL1 instead s/regieme/regime/ > of virtual EL1) and AT instructions operating on S12 will not work from > EL1. > > This patch does several things. I think this is a good hint that the patch can be split into several patches. The size of the patch plus the emulation logic make this patch rather tedious to review. > > 1. List and define all AT system instructions to emulate and document > the emulation design. > > 2. Implement AT instruction handling logic in EL2. This will be used to > emulate AT instructions executed in the virtual EL2. > > AT instruction emulation works by loading the proper processor > context, which depends on the trapped instruction and the virtual > HCR_EL2, to the EL1 virtual memory control registers and executing AT > instructions. Note that ctxt->hw_sys_regs is expected to have the > proper processor context before calling the handling > function(__kvm_at_insn) implemented in this patch. > > 4. Emulate AT S1E[01] instructions by issuing the same instructions in Hmm... where's point number 3? > EL2. We set the physical EL1 registers, NV and NV1 bits as described in > the AT instruction emulation overview. > > 5. Emulate AT A12E[01] instructions in two steps: First, do the stage-1 ^ I'm guessing that's AT S12E[01]. > translation by reusing the existing AT emulation functions. Second, do > the stage-2 translation by walking the guest hypervisor's stage-2 page > table in software. Record the translation result to PAR_EL1. > > 6. Emulate AT S1E2 instructions by issuing the corresponding S1E1 > instructions in EL2. We set the physical EL1 registers and the HCR_EL2 > register as described in the AT instruction emulation overview. > > 7. Forward system instruction traps to the virtual EL2 if the corresponding > virtual AT bit is set in the virtual HCR_EL2. Looks like points 4-7 make good canditates for individual patches. > > [ Much logic above has been reworked by Marc Zyngier ] > > Signed-off-by: Jintack Lim <jintack.lim@xxxxxxxxxx> > Signed-off-by: Marc Zyngier <maz@xxxxxxxxxx> > Signed-off-by: Christoffer Dall <christoffer.dall@xxxxxxx> > --- > arch/arm64/include/asm/kvm_arm.h | 2 + > arch/arm64/include/asm/kvm_asm.h | 2 + > arch/arm64/include/asm/sysreg.h | 17 +++ > arch/arm64/kvm/Makefile | 2 +- > arch/arm64/kvm/at.c | 219 +++++++++++++++++++++++++++++ > arch/arm64/kvm/hyp/vhe/switch.c | 13 +- > arch/arm64/kvm/sys_regs.c | 229 ++++++++++++++++++++++++++++++- > 7 files changed, 478 insertions(+), 6 deletions(-) > create mode 100644 arch/arm64/kvm/at.c > > diff --git a/arch/arm64/include/asm/kvm_arm.h b/arch/arm64/include/asm/kvm_arm.h > index 3675879b53c6..aa3bdce1b166 100644 > --- a/arch/arm64/include/asm/kvm_arm.h > +++ b/arch/arm64/include/asm/kvm_arm.h > @@ -20,6 +20,7 @@ > #define HCR_AMVOFFEN (UL(1) << 51) > #define HCR_FIEN (UL(1) << 47) > #define HCR_FWB (UL(1) << 46) > +#define HCR_AT (UL(1) << 44) > #define HCR_NV1 (UL(1) << 43) > #define HCR_NV (UL(1) << 42) > #define HCR_API (UL(1) << 41) > @@ -118,6 +119,7 @@ > #define VTCR_EL2_TG0_16K TCR_TG0_16K > #define VTCR_EL2_TG0_64K TCR_TG0_64K > #define VTCR_EL2_SH0_MASK TCR_SH0_MASK > +#define VTCR_EL2_SH0_SHIFT TCR_SH0_SHIFT > #define VTCR_EL2_SH0_INNER TCR_SH0_INNER > #define VTCR_EL2_ORGN0_MASK TCR_ORGN0_MASK > #define VTCR_EL2_ORGN0_WBWA TCR_ORGN0_WBWA > diff --git a/arch/arm64/include/asm/kvm_asm.h b/arch/arm64/include/asm/kvm_asm.h > index d5b0386ef765..e22861ece3c3 100644 > --- a/arch/arm64/include/asm/kvm_asm.h > +++ b/arch/arm64/include/asm/kvm_asm.h > @@ -208,6 +208,8 @@ extern void __kvm_tlb_flush_vmid_ipa(struct kvm_s2_mmu *mmu, phys_addr_t ipa, > extern void __kvm_tlb_flush_vmid(struct kvm_s2_mmu *mmu); > > extern void __kvm_timer_set_cntvoff(u64 cntvoff); > +extern void __kvm_at_s1e01(struct kvm_vcpu *vcpu, u32 op, u64 vaddr); > +extern void __kvm_at_s1e2(struct kvm_vcpu *vcpu, u32 op, u64 vaddr); > > extern int __kvm_vcpu_run(struct kvm_vcpu *vcpu); > > diff --git a/arch/arm64/include/asm/sysreg.h b/arch/arm64/include/asm/sysreg.h > index 61c990e5591a..ea17d1eabfc5 100644 > --- a/arch/arm64/include/asm/sysreg.h > +++ b/arch/arm64/include/asm/sysreg.h > @@ -658,6 +658,23 @@ > > #define SYS_SP_EL2 sys_reg(3, 6, 4, 1, 0) > > +/* AT instructions */ > +#define AT_Op0 1 > +#define AT_CRn 7 > + > +#define OP_AT_S1E1R sys_insn(AT_Op0, 0, AT_CRn, 8, 0) > +#define OP_AT_S1E1W sys_insn(AT_Op0, 0, AT_CRn, 8, 1) > +#define OP_AT_S1E0R sys_insn(AT_Op0, 0, AT_CRn, 8, 2) > +#define OP_AT_S1E0W sys_insn(AT_Op0, 0, AT_CRn, 8, 3) > +#define OP_AT_S1E1RP sys_insn(AT_Op0, 0, AT_CRn, 9, 0) > +#define OP_AT_S1E1WP sys_insn(AT_Op0, 0, AT_CRn, 9, 1) > +#define OP_AT_S1E2R sys_insn(AT_Op0, 4, AT_CRn, 8, 0) > +#define OP_AT_S1E2W sys_insn(AT_Op0, 4, AT_CRn, 8, 1) > +#define OP_AT_S12E1R sys_insn(AT_Op0, 4, AT_CRn, 8, 4) > +#define OP_AT_S12E1W sys_insn(AT_Op0, 4, AT_CRn, 8, 5) > +#define OP_AT_S12E0R sys_insn(AT_Op0, 4, AT_CRn, 8, 6) > +#define OP_AT_S12E0W sys_insn(AT_Op0, 4, AT_CRn, 8, 7) > + > /* Common SCTLR_ELx flags. */ > #define SCTLR_ELx_DSSBS (BIT(44)) > #define SCTLR_ELx_ATA (BIT(43)) > diff --git a/arch/arm64/kvm/Makefile b/arch/arm64/kvm/Makefile > index dbaf42ff65f1..b800dcbd157f 100644 > --- a/arch/arm64/kvm/Makefile > +++ b/arch/arm64/kvm/Makefile > @@ -14,7 +14,7 @@ kvm-y += arm.o mmu.o mmio.o psci.o hypercalls.o pvtime.o \ > inject_fault.o va_layout.o handle_exit.o \ > guest.o debug.o reset.o sys_regs.o \ > vgic-sys-reg-v3.o fpsimd.o pmu.o pkvm.o \ > - arch_timer.o trng.o emulate-nested.o nested.o \ > + arch_timer.o trng.o emulate-nested.o nested.o at.o \ > vgic/vgic.o vgic/vgic-init.o \ > vgic/vgic-irqfd.o vgic/vgic-v2.o \ > vgic/vgic-v3.o vgic/vgic-v4.o \ > diff --git a/arch/arm64/kvm/at.c b/arch/arm64/kvm/at.c > new file mode 100644 > index 000000000000..574c664e984b > --- /dev/null > +++ b/arch/arm64/kvm/at.c > @@ -0,0 +1,219 @@ > +// SPDX-License-Identifier: GPL-2.0-only > +/* > + * Copyright (C) 2017 - Linaro Ltd > + * Author: Jintack Lim <jintack.lim@xxxxxxxxxx> > + */ > + > +#include <asm/kvm_hyp.h> > +#include <asm/kvm_mmu.h> > + > +struct mmu_config { > + u64 ttbr0; > + u64 ttbr1; > + u64 tcr; > + u64 sctlr; > + u64 vttbr; > + u64 vtcr; > + u64 hcr; > +}; > + > +static void __mmu_config_save(struct mmu_config *config) > +{ > + config->ttbr0 = read_sysreg_el1(SYS_TTBR0); > + config->ttbr1 = read_sysreg_el1(SYS_TTBR1); > + config->tcr = read_sysreg_el1(SYS_TCR); > + config->sctlr = read_sysreg_el1(SYS_SCTLR); > + config->vttbr = read_sysreg(vttbr_el2); > + config->vtcr = read_sysreg(vtcr_el2); KVM saves VTCR_EL2, but the register is never changed between __mmu_config_{save,restore} sequences. Another comment about this below. > + config->hcr = read_sysreg(hcr_el2); > +} > + > +static void __mmu_config_restore(struct mmu_config *config) > +{ > + write_sysreg_el1(config->ttbr0, SYS_TTBR0); > + write_sysreg_el1(config->ttbr1, SYS_TTBR1); > + write_sysreg_el1(config->tcr, SYS_TCR); > + write_sysreg_el1(config->sctlr, SYS_SCTLR); > + write_sysreg(config->vttbr, vttbr_el2); > + write_sysreg(config->vtcr, vtcr_el2); > + write_sysreg(config->hcr, hcr_el2); > + > + isb(); > +} > + > +void __kvm_at_s1e01(struct kvm_vcpu *vcpu, u32 op, u64 vaddr) > +{ > + struct kvm_cpu_context *ctxt = &vcpu->arch.ctxt; > + struct mmu_config config; > + struct kvm_s2_mmu *mmu; > + > + spin_lock(&vcpu->kvm->mmu_lock); > + > + /* > + * If HCR_EL2.{E2H,TGE} == {1,1}, the MMU context is already > + * the right one (as we trapped from vEL2). > + */ > + if (vcpu_el2_e2h_is_set(vcpu) && vcpu_el2_tge_is_set(vcpu)) > + goto skip_mmu_switch; > + > + /* > + * FIXME: Obtaining the S2 MMU for a guest guest is horribly > + * racy, and we may not find it (evicted by another vcpu, for > + * example). > + */ I think the "horribly racy" part deserves some elaboration. As far as I can tell get_s2_mmu_nested() and lookup_s2_mmu() is always called with kvm->mmu_lock held. I suppose "evicted by another vcpu" means that get_s2_mmu_nested() decided to reuse the MMU that KVM needs, in which case it's impossible to execute the AT instruction, as there is no shadow stage 2 for the context. I wonder if that's something that KVM should try to avoid, One obvious solution would be never to reuse MMUs, but that comes at the cost of allowing a L1 guest to eat up the L0 host's memory with kvm_s2_mmu structs by creating many L2 guests. Another solution would be to have a software stage 1 translation table walker which populates the shadow S2 during the walk, if and only if the IPA is present in the virtual stage 2 with the right permissions. What do you think? > + mmu = lookup_s2_mmu(vcpu->kvm, > + vcpu_read_sys_reg(vcpu, VTTBR_EL2), > + vcpu_read_sys_reg(vcpu, HCR_EL2)); > + > + if (WARN_ON(!mmu)) > + goto out; If I'm not mistaken, in this case, guest PAR_EL1 is left untouched by KVM. Shouldn't KVM set PAR_EL1 to SYS_PAR_EL1_F so the L1 guest doesn't treat the stale PAR_EL1 value as valid? > + > + /* We've trapped, so everything is live on the CPU. */ > + __mmu_config_save(&config); > + > + write_sysreg_el1(ctxt_sys_reg(ctxt, TTBR0_EL1), SYS_TTBR0); > + write_sysreg_el1(ctxt_sys_reg(ctxt, TTBR1_EL1), SYS_TTBR1); > + write_sysreg_el1(ctxt_sys_reg(ctxt, TCR_EL1), SYS_TCR); > + write_sysreg_el1(ctxt_sys_reg(ctxt, SCTLR_EL1), SYS_SCTLR); > + write_sysreg(kvm_get_vttbr(mmu), vttbr_el2); > + /* > + * REVISIT: do we need anything from the guest's VTCR_EL2? If > + * looks like keeping the hosts configuration is the right > + * thing to do at this stage (and we could avoid save/restore > + * it. Keep the host's version for now. > + */ I also don't think it's necessary to load the L1 guest's VTCR_EL2 register. The register controls virtual stage 2, which is never used because KVM will always use the shadow stage 2. > + write_sysreg((config.hcr & ~HCR_TGE) | HCR_VM, hcr_el2); > + > + isb(); > + > +skip_mmu_switch: > + > + switch (op) { > + case OP_AT_S1E1R: > + case OP_AT_S1E1RP: > + asm volatile("at s1e1r, %0" : : "r" (vaddr)); > + break; > + case OP_AT_S1E1W: > + case OP_AT_S1E1WP: > + asm volatile("at s1e1w, %0" : : "r" (vaddr)); > + break; > + case OP_AT_S1E0R: > + asm volatile("at s1e0r, %0" : : "r" (vaddr)); > + break; > + case OP_AT_S1E0W: > + asm volatile("at s1e0w, %0" : : "r" (vaddr)); > + break; > + default: > + WARN_ON_ONCE(1); > + break; > + } > + > + isb(); > + > + ctxt_sys_reg(ctxt, PAR_EL1) = read_sysreg(par_el1); > + > + /* > + * Failed? let's leave the building now. > + * > + * FIXME: how about a failed translation because the shadow S2 > + * wasn't populated? We may need to perform a SW PTW, > + * populating our shadow S2 and retry the instruction. > + */ > + if (ctxt_sys_reg(ctxt, PAR_EL1) & 1) > + goto nopan; > + > + /* No PAN? No problem. */ > + if (!(*vcpu_cpsr(vcpu) & PSR_PAN_BIT)) > + goto nopan; > + > + /* > + * For PAN-involved AT operations, perform the same > + * translation, using EL0 this time. > + */ The description for FEAT_PAN is: "When the value of this PAN state bit is 1, any privileged data access from EL1, or EL2 when HCR_EL2.E2H is 1, to a virtual memory address that is accessible to data accesses at EL0, generates a Permission fault." I assume KVM executes the AT to make sure there is a valid translation translation for the guest virtual address, right? > + switch (op) { > + case OP_AT_S1E1RP: > + asm volatile("at s1e0r, %0" : : "r" (vaddr)); > + break; > + case OP_AT_S1E1WP: > + asm volatile("at s1e0w, %0" : : "r" (vaddr)); > + break; > + default: > + goto nopan; > + } > + > + /* > + * If the EL0 translation has succeeded, we need to pretend > + * the AT operation has failed, as the PAN setting forbids > + * such a translation. Hmm.. according to the description of FEAT_PAN, the AT translation fails because of PAN=1 when CurrentEL=EL2 && HCR_EL2.E2H=1. So if the VCPU is at virtual EL2 and virtual HCR_EL2.E2H=0, then it is allowed to succeed. Thanks, Alex > + * > + * FIXME: we hardcode a Level-3 permission fault. We really > + * should return the real fault level. > + */ > + if (!(read_sysreg(par_el1) & 1)) > + ctxt_sys_reg(ctxt, PAR_EL1) = 0x1f; > + > +nopan: > + if (!(vcpu_el2_e2h_is_set(vcpu) && vcpu_el2_tge_is_set(vcpu))) > + __mmu_config_restore(&config); > + > +out: > + spin_unlock(&vcpu->kvm->mmu_lock); > +} > + > +void __kvm_at_s1e2(struct kvm_vcpu *vcpu, u32 op, u64 vaddr) > +{ > + struct kvm_cpu_context *ctxt = &vcpu->arch.ctxt; > + struct mmu_config config; > + struct kvm_s2_mmu *mmu; > + u64 val; > + > + spin_lock(&vcpu->kvm->mmu_lock); > + > + mmu = &vcpu->kvm->arch.mmu; > + > + /* We've trapped, so everything is live on the CPU. */ > + __mmu_config_save(&config); > + > + if (vcpu_el2_e2h_is_set(vcpu)) { > + write_sysreg_el1(ctxt_sys_reg(ctxt, TTBR0_EL2), SYS_TTBR0); > + write_sysreg_el1(ctxt_sys_reg(ctxt, TTBR1_EL2), SYS_TTBR1); > + write_sysreg_el1(ctxt_sys_reg(ctxt, TCR_EL2), SYS_TCR); > + write_sysreg_el1(ctxt_sys_reg(ctxt, SCTLR_EL2), SYS_SCTLR); > + > + val = config.hcr; > + } else { > + write_sysreg_el1(ctxt_sys_reg(ctxt, TTBR0_EL2), SYS_TTBR0); > + val = translate_tcr_el2_to_tcr_el1(ctxt_sys_reg(ctxt, TCR_EL2)); > + write_sysreg_el1(val, SYS_TCR); > + val = translate_sctlr_el2_to_sctlr_el1(ctxt_sys_reg(ctxt, SCTLR_EL2)); > + write_sysreg_el1(val, SYS_SCTLR); > + > + val = config.hcr | HCR_NV | HCR_NV1; > + } > + > + write_sysreg(kvm_get_vttbr(mmu), vttbr_el2); > + /* FIXME: write S2 MMU VTCR_EL2? */ > + write_sysreg((val & ~HCR_TGE) | HCR_VM, hcr_el2); > + > + isb(); > + > + switch (op) { > + case OP_AT_S1E2R: > + asm volatile("at s1e1r, %0" : : "r" (vaddr)); > + break; > + case OP_AT_S1E2W: > + asm volatile("at s1e1w, %0" : : "r" (vaddr)); > + break; > + default: > + WARN_ON_ONCE(1); > + break; > + } > + > + isb(); > + > + /* FIXME: handle failed translation due to shadow S2 */ > + ctxt_sys_reg(ctxt, PAR_EL1) = read_sysreg(par_el1); > + > + __mmu_config_restore(&config); > + spin_unlock(&vcpu->kvm->mmu_lock); > +} > diff --git a/arch/arm64/kvm/hyp/vhe/switch.c b/arch/arm64/kvm/hyp/vhe/switch.c > index 28845f907cfc..b7790d3c4122 100644 > --- a/arch/arm64/kvm/hyp/vhe/switch.c > +++ b/arch/arm64/kvm/hyp/vhe/switch.c > @@ -41,9 +41,10 @@ static void __activate_traps(struct kvm_vcpu *vcpu) > if (!vcpu_el2_e2h_is_set(vcpu)) { > /* > * For a guest hypervisor on v8.0, trap and emulate > - * the EL1 virtual memory control register accesses. > + * the EL1 virtual memory control register accesses > + * as well as the AT S1 operations. > */ > - hcr |= HCR_TVM | HCR_TRVM | HCR_NV1; > + hcr |= HCR_TVM | HCR_TRVM | HCR_AT | HCR_NV1; > } else { > /* > * For a guest hypervisor on v8.1 (VHE), allow to > @@ -68,6 +69,14 @@ static void __activate_traps(struct kvm_vcpu *vcpu) > hcr &= ~HCR_TVM; > > hcr |= vhcr_el2 & (HCR_TVM | HCR_TRVM); > + > + /* > + * If we're using the EL1 translation regime > + * (TGE clear), then ensure that AT S1 ops are > + * trapped too. > + */ > + if (!vcpu_el2_tge_is_set(vcpu)) > + hcr |= HCR_AT; > } > } > > diff --git a/arch/arm64/kvm/sys_regs.c b/arch/arm64/kvm/sys_regs.c > index f669618f966b..7be57e1b7019 100644 > --- a/arch/arm64/kvm/sys_regs.c > +++ b/arch/arm64/kvm/sys_regs.c > @@ -1704,7 +1704,6 @@ static bool access_sp_el1(struct kvm_vcpu *vcpu, > return true; > } > > - > static bool access_elr(struct kvm_vcpu *vcpu, > struct sys_reg_params *p, > const struct sys_reg_desc *r) > @@ -2236,12 +2235,236 @@ static const struct sys_reg_desc sys_reg_descs[] = { > EL2_REG(SP_EL2, NULL, reset_unknown, 0), > }; > > -#define SYS_INSN_TO_DESC(insn, access_fn, forward_fn) \ > - { SYS_DESC((insn)), (access_fn), NULL, 0, 0, NULL, NULL, (forward_fn) } > +static bool handle_s1e01(struct kvm_vcpu *vcpu, struct sys_reg_params *p, > + const struct sys_reg_desc *r) > +{ > + int sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2); > + > + if (vcpu_has_nv(vcpu) && forward_traps(vcpu, HCR_AT)) > + return false; > + > + __kvm_at_s1e01(vcpu, sys_encoding, p->regval); > + > + return true; > +} > + > +static bool handle_s1e2(struct kvm_vcpu *vcpu, struct sys_reg_params *p, > + const struct sys_reg_desc *r) > +{ > + int sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2); > + > + if (vcpu_has_nv(vcpu) && forward_nv_traps(vcpu)) > + return false; > + > + __kvm_at_s1e2(vcpu, sys_encoding, p->regval); > + > + return true; > +} > + > +static u64 setup_par_aborted(u32 esr) > +{ > + u64 par = 0; > + > + /* S [9]: fault in the stage 2 translation */ > + par |= (1 << 9); > + /* FST [6:1]: Fault status code */ > + par |= (esr << 1); > + /* F [0]: translation is aborted */ > + par |= 1; > + > + return par; > +} > + > +static u64 setup_par_completed(struct kvm_vcpu *vcpu, struct kvm_s2_trans *out) > +{ > + u64 par, vtcr_sh0; > + > + /* F [0]: Translation is completed successfully */ > + par = 0; > + /* ATTR [63:56] */ > + par |= out->upper_attr; > + /* PA [47:12] */ > + par |= out->output & GENMASK_ULL(11, 0); > + /* RES1 [11] */ > + par |= (1UL << 11); > + /* SH [8:7]: Shareability attribute */ > + vtcr_sh0 = vcpu_read_sys_reg(vcpu, VTCR_EL2) & VTCR_EL2_SH0_MASK; > + par |= (vtcr_sh0 >> VTCR_EL2_SH0_SHIFT) << 7; > + > + return par; > +} > + > +static bool handle_s12(struct kvm_vcpu *vcpu, struct sys_reg_params *p, > + const struct sys_reg_desc *r, bool write) > +{ > + u64 par, va; > + u32 esr, op; > + phys_addr_t ipa; > + struct kvm_s2_trans out; > + int ret; > + > + if (vcpu_has_nv(vcpu) && forward_nv_traps(vcpu)) > + return false; > + > + /* Do the stage-1 translation */ > + va = p->regval; > + op = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2); > + switch (op) { > + case OP_AT_S12E1R: > + op = OP_AT_S1E1R; > + break; > + case OP_AT_S12E1W: > + op = OP_AT_S1E1W; > + break; > + case OP_AT_S12E0R: > + op = OP_AT_S1E0R; > + break; > + case OP_AT_S12E0W: > + op = OP_AT_S1E0W; > + break; > + default: > + WARN_ON_ONCE(1); > + return true; > + } > + > + __kvm_at_s1e01(vcpu, op, va); > + par = vcpu_read_sys_reg(vcpu, PAR_EL1); > + if (par & 1) { > + /* The stage-1 translation aborted */ > + return true; > + } > + > + /* Do the stage-2 translation */ > + ipa = (par & GENMASK_ULL(47, 12)) | (va & GENMASK_ULL(11, 0)); > + out.esr = 0; > + ret = kvm_walk_nested_s2(vcpu, ipa, &out); > + if (ret < 0) > + return false; > + > + /* Check if the stage-2 PTW is aborted */ > + if (out.esr) { > + esr = out.esr; > + goto s2_trans_abort; > + } > + > + /* Check the access permission */ > + if ((!write && !out.readable) || (write && !out.writable)) { > + esr = ESR_ELx_FSC_PERM; > + esr |= out.level & 0x3; > + goto s2_trans_abort; > + } > + > + vcpu_write_sys_reg(vcpu, setup_par_completed(vcpu, &out), PAR_EL1); > + return true; > + > +s2_trans_abort: > + vcpu_write_sys_reg(vcpu, setup_par_aborted(esr), PAR_EL1); > + return true; > +} > + > +static bool handle_s12r(struct kvm_vcpu *vcpu, struct sys_reg_params *p, > + const struct sys_reg_desc *r) > +{ > + return handle_s12(vcpu, p, r, false); > +} > + > +static bool handle_s12w(struct kvm_vcpu *vcpu, struct sys_reg_params *p, > + const struct sys_reg_desc *r) > +{ > + return handle_s12(vcpu, p, r, true); > +} > + > +/* > + * AT instruction emulation > + * > + * We emulate AT instructions executed in the virtual EL2. > + * Basic strategy for the stage-1 translation emulation is to load proper > + * context, which depends on the trapped instruction and the virtual HCR_EL2, > + * to the EL1 virtual memory control registers and execute S1E[01] instructions > + * in EL2. See below for more detail. > + * > + * For the stage-2 translation, which is necessary for S12E[01] emulation, > + * we walk the guest hypervisor's stage-2 page table in software. > + * > + * The stage-1 translation emulations can be divided into two groups depending > + * on the translation regime. > + * > + * 1. EL2 AT instructions: S1E2x > + * +-----------------------------------------------------------------------+ > + * | | Setting for the emulation | > + * | Virtual HCR_EL2.E2H on trap |-----------------------------------------+ > + * | | Phys EL1 regs | Phys NV, NV1 | Phys TGE | > + * |-----------------------------------------------------------------------| > + * | 0 | vEL2 | (1, 1) | 0 | > + * | 1 | vEL2 | (0, 0) | 0 | > + * +-----------------------------------------------------------------------+ > + * > + * We emulate the EL2 AT instructions by loading virtual EL2 context > + * to the EL1 virtual memory control registers and executing corresponding > + * EL1 AT instructions. > + * > + * We set physical NV and NV1 bits to use EL2 page table format for non-VHE > + * guest hypervisor (i.e. HCR_EL2.E2H == 0). As a VHE guest hypervisor uses the > + * EL1 page table format, we don't set those bits. > + * > + * We should clear physical TGE bit not to use the EL2 translation regime when > + * the host uses the VHE feature. > + * > + * > + * 2. EL0/EL1 AT instructions: S1E[01]x, S12E1x > + * +----------------------------------------------------------------------+ > + * | Virtual HCR_EL2 on trap | Setting for the emulation | > + * |----------------------------------------------------------------------+ > + * | (vE2H, vTGE) | (vNV, vNV1) | Phys EL1 regs | Phys NV, NV1 | Phys TGE | > + * |----------------------------------------------------------------------| > + * | (0, 0)* | (0, 0) | vEL1 | (0, 0) | 0 | > + * | (0, 0) | (1, 1) | vEL1 | (1, 1) | 0 | > + * | (1, 1) | (0, 0) | vEL2 | (0, 0) | 0 | > + * | (1, 1) | (1, 1) | vEL2 | (1, 1) | 0 | > + * +----------------------------------------------------------------------+ > + * > + * *For (0, 0) in the 'Virtual HCR_EL2 on trap' column, it actually means > + * (1, 1). Keep them (0, 0) just for the readability. > + * > + * We set physical EL1 virtual memory control registers depending on > + * (vE2H, vTGE) pair. When the pair is (0, 0) where AT instructions are > + * supposed to use EL0/EL1 translation regime, we load the EL1 registers with > + * the virtual EL1 registers (i.e. EL1 registers from the guest hypervisor's > + * point of view). When the pair is (1, 1), however, AT instructions are defined > + * to apply EL2 translation regime. To emulate this behavior, we load the EL1 > + * registers with the virtual EL2 context. (i.e the shadow registers) > + * > + * We respect the virtual NV and NV1 bit for the emulation. When those bits are > + * set, it means that a guest hypervisor would like to use EL2 page table format > + * for the EL1 translation regime. We emulate this by setting the physical > + * NV and NV1 bits. > + */ > + > +#define SYS_INSN(insn, access_fn) \ > + { \ > + SYS_DESC(OP_##insn), \ > + .access = (access_fn), \ > + } > + > static struct sys_reg_desc sys_insn_descs[] = { > { SYS_DESC(SYS_DC_ISW), access_dcsw }, > + > + SYS_INSN(AT_S1E1R, handle_s1e01), > + SYS_INSN(AT_S1E1W, handle_s1e01), > + SYS_INSN(AT_S1E0R, handle_s1e01), > + SYS_INSN(AT_S1E0W, handle_s1e01), > + SYS_INSN(AT_S1E1RP, handle_s1e01), > + SYS_INSN(AT_S1E1WP, handle_s1e01), > + > { SYS_DESC(SYS_DC_CSW), access_dcsw }, > { SYS_DESC(SYS_DC_CISW), access_dcsw }, > + > + SYS_INSN(AT_S1E2R, handle_s1e2), > + SYS_INSN(AT_S1E2W, handle_s1e2), > + SYS_INSN(AT_S12E1R, handle_s12r), > + SYS_INSN(AT_S12E1W, handle_s12w), > + SYS_INSN(AT_S12E0R, handle_s12r), > + SYS_INSN(AT_S12E0W, handle_s12w), > }; > > static bool trap_dbgdidr(struct kvm_vcpu *vcpu, > -- > 2.30.2 >