Hyper-V supports the use of XMM registers to perform fast hypercalls. This allows guests to take advantage of the improved performance of the fast hypercall interface even though a hypercall may require more than (the current maximum of) two input registers. The XMM fast hypercall interface uses six additional XMM registers (XMM0 to XMM5) to allow the guest to pass an input parameter block of up to 112 bytes. Hyper-V can also return data back to the guest in the remaining XMM registers that are not used by the current hypercall. Add framework to read/write to XMM registers in kvm_hv_hypercall() and use the additional hypercall inputs from XMM registers in kvm_hv_flush_tlb() when possible. Cc: Alexander Graf <graf@xxxxxxxxxx> Co-developed-by: Evgeny Iakovlev <eyakovl@xxxxxxxxx> Signed-off-by: Evgeny Iakovlev <eyakovl@xxxxxxxxx> Signed-off-by: Siddharth Chandrasekaran <sidcha@xxxxxxxxx> --- arch/x86/kvm/hyperv.c | 109 ++++++++++++++++++++++++++++++++++-------- 1 file changed, 90 insertions(+), 19 deletions(-) diff --git a/arch/x86/kvm/hyperv.c b/arch/x86/kvm/hyperv.c index 8f6babd1ea0d..bf2f86f263f1 100644 --- a/arch/x86/kvm/hyperv.c +++ b/arch/x86/kvm/hyperv.c @@ -36,6 +36,7 @@ #include "trace.h" #include "irq.h" +#include "fpu.h" /* "Hv#1" signature */ #define HYPERV_CPUID_SIGNATURE_EAX 0x31237648 @@ -1623,6 +1624,8 @@ static __always_inline unsigned long *sparse_set_to_vcpu_mask( return vcpu_bitmap; } +#define KVM_HV_HYPERCALL_MAX_XMM_REGISTERS 6 + struct kvm_hv_hcall { u64 param; u64 ingpa; @@ -1632,10 +1635,14 @@ struct kvm_hv_hcall { u16 rep_idx; bool fast; bool rep; + sse128_t xmm[KVM_HV_HYPERCALL_MAX_XMM_REGISTERS]; + bool xmm_dirty; }; static u64 kvm_hv_flush_tlb(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc, bool ex) { + int i, j; + gpa_t gpa; struct kvm *kvm = vcpu->kvm; struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); struct hv_tlb_flush_ex flush_ex; @@ -1649,8 +1656,15 @@ static u64 kvm_hv_flush_tlb(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc, bool bool all_cpus; if (!ex) { - if (unlikely(kvm_read_guest(kvm, hc->ingpa, &flush, sizeof(flush)))) - return HV_STATUS_INVALID_HYPERCALL_INPUT; + if (hc->fast) { + flush.address_space = hc->ingpa; + flush.flags = hc->outgpa; + flush.processor_mask = sse128_lo(hc->xmm[0]); + } else { + if (unlikely(kvm_read_guest(kvm, hc->ingpa, + &flush, sizeof(flush)))) + return HV_STATUS_INVALID_HYPERCALL_INPUT; + } trace_kvm_hv_flush_tlb(flush.processor_mask, flush.address_space, flush.flags); @@ -1668,9 +1682,16 @@ static u64 kvm_hv_flush_tlb(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc, bool all_cpus = (flush.flags & HV_FLUSH_ALL_PROCESSORS) || flush.processor_mask == 0; } else { - if (unlikely(kvm_read_guest(kvm, hc->ingpa, &flush_ex, - sizeof(flush_ex)))) - return HV_STATUS_INVALID_HYPERCALL_INPUT; + if (hc->fast) { + flush_ex.address_space = hc->ingpa; + flush_ex.flags = hc->outgpa; + memcpy(&flush_ex.hv_vp_set, + &hc->xmm[0], sizeof(hc->xmm[0])); + } else { + if (unlikely(kvm_read_guest(kvm, hc->ingpa, &flush_ex, + sizeof(flush_ex)))) + return HV_STATUS_INVALID_HYPERCALL_INPUT; + } trace_kvm_hv_flush_tlb_ex(flush_ex.hv_vp_set.valid_bank_mask, flush_ex.hv_vp_set.format, @@ -1681,20 +1702,29 @@ static u64 kvm_hv_flush_tlb(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc, bool all_cpus = flush_ex.hv_vp_set.format != HV_GENERIC_SET_SPARSE_4K; - sparse_banks_len = - bitmap_weight((unsigned long *)&valid_bank_mask, 64) * - sizeof(sparse_banks[0]); + sparse_banks_len = bitmap_weight((unsigned long *)&valid_bank_mask, 64); if (!sparse_banks_len && !all_cpus) goto ret_success; - if (!all_cpus && - kvm_read_guest(kvm, - hc->ingpa + offsetof(struct hv_tlb_flush_ex, - hv_vp_set.bank_contents), - sparse_banks, - sparse_banks_len)) - return HV_STATUS_INVALID_HYPERCALL_INPUT; + if (!all_cpus) { + if (hc->fast) { + if (sparse_banks_len > KVM_HV_HYPERCALL_MAX_XMM_REGISTERS - 1) + return HV_STATUS_INVALID_HYPERCALL_INPUT; + for (i = 0, j = 1; i < sparse_banks_len; i += 2, j++) { + sparse_banks[i + 0] = sse128_lo(hc->xmm[j]); + sparse_banks[i + 1] = sse128_hi(hc->xmm[j]); + } + } else { + gpa = hc->ingpa; + gpa += offsetof(struct hv_tlb_flush_ex, + hv_vp_set.bank_contents); + if (unlikely(kvm_read_guest(kvm, gpa, sparse_banks, + sparse_banks_len * + sizeof(sparse_banks[0])))) + return HV_STATUS_INVALID_HYPERCALL_INPUT; + } + } } cpumask_clear(&hv_vcpu->tlb_flush); @@ -1890,6 +1920,41 @@ static u16 kvm_hvcall_signal_event(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *h return HV_STATUS_SUCCESS; } +static bool is_xmm_fast_hypercall(struct kvm_hv_hcall *hc) +{ + switch (hc->code) { + case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST: + case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE: + case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX: + case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX: + return true; + } + + return false; +} + +static inline void kvm_hv_hypercall_read_xmm(struct kvm_hv_hcall *hc) +{ + int reg; + + kvm_fpu_get(); + for (reg = 0; reg < KVM_HV_HYPERCALL_MAX_XMM_REGISTERS; reg++) + _kvm_read_sse_reg(reg, &hc->xmm[reg]); + kvm_fpu_put(); + hc->xmm_dirty = false; +} + +static inline void kvm_hv_hypercall_write_xmm(struct kvm_hv_hcall *hc) +{ + int reg; + + kvm_fpu_get(); + for (reg = 0; reg < KVM_HV_HYPERCALL_MAX_XMM_REGISTERS; reg++) + _kvm_write_sse_reg(reg, &hc->xmm[reg]); + kvm_fpu_put(); + hc->xmm_dirty = false; +} + int kvm_hv_hypercall(struct kvm_vcpu *vcpu) { struct kvm_hv_hcall hc; @@ -1926,6 +1991,9 @@ int kvm_hv_hypercall(struct kvm_vcpu *vcpu) hc.rep_idx = (hc.param >> HV_HYPERCALL_REP_START_OFFSET) & 0xfff; hc.rep = !!(hc.rep_cnt || hc.rep_idx); + if (is_xmm_fast_hypercall(&hc)) + kvm_hv_hypercall_read_xmm(&hc); + trace_kvm_hv_hypercall(hc.code, hc.fast, hc.rep_cnt, hc.rep_idx, hc.ingpa, hc.outgpa); @@ -1961,28 +2029,28 @@ int kvm_hv_hypercall(struct kvm_vcpu *vcpu) kvm_hv_hypercall_complete_userspace; return 0; case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST: - if (unlikely(hc.fast || !hc.rep_cnt || hc.rep_idx)) { + if (unlikely(!hc.rep_cnt || hc.rep_idx)) { ret = HV_STATUS_INVALID_HYPERCALL_INPUT; break; } ret = kvm_hv_flush_tlb(vcpu, &hc, false); break; case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE: - if (unlikely(hc.fast || hc.rep)) { + if (unlikely(hc.rep)) { ret = HV_STATUS_INVALID_HYPERCALL_INPUT; break; } ret = kvm_hv_flush_tlb(vcpu, &hc, false); break; case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX: - if (unlikely(hc.fast || !hc.rep_cnt || hc.rep_idx)) { + if (unlikely(!hc.rep_cnt || hc.rep_idx)) { ret = HV_STATUS_INVALID_HYPERCALL_INPUT; break; } ret = kvm_hv_flush_tlb(vcpu, &hc, true); break; case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX: - if (unlikely(hc.fast || hc.rep)) { + if (unlikely(hc.rep)) { ret = HV_STATUS_INVALID_HYPERCALL_INPUT; break; } @@ -2035,6 +2103,9 @@ int kvm_hv_hypercall(struct kvm_vcpu *vcpu) break; } + if (hc.xmm_dirty) + kvm_hv_hypercall_write_xmm(&hc); + return kvm_hv_hypercall_complete(vcpu, ret); } -- 2.17.1 Amazon Development Center Germany GmbH Krausenstr. 38 10117 Berlin Geschaeftsfuehrung: Christian Schlaeger, Jonathan Weiss Eingetragen am Amtsgericht Charlottenburg unter HRB 149173 B Sitz: Berlin Ust-ID: DE 289 237 879