Re: [PATCH v2 1/2] sched/wait: Add add_wait_queue_priority()

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



On Tue, Oct 27, 2020 at 02:39:43PM +0000, David Woodhouse wrote:
> From: David Woodhouse <dwmw@xxxxxxxxxxxx>
> 
> This allows an exclusive wait_queue_entry to be added at the head of the
> queue, instead of the tail as normal. Thus, it gets to consume events
> first without allowing non-exclusive waiters to be woken at all.
> 
> The (first) intended use is for KVM IRQFD, which currently has
> inconsistent behaviour depending on whether posted interrupts are
> available or not. If they are, KVM will bypass the eventfd completely
> and deliver interrupts directly to the appropriate vCPU. If not, events
> are delivered through the eventfd and userspace will receive them when
> polling on the eventfd.
> 
> By using add_wait_queue_priority(), KVM will be able to consistently
> consume events within the kernel without accidentally exposing them
> to userspace when they're supposed to be bypassed. This, in turn, means
> that userspace doesn't have to jump through hoops to avoid listening
> on the erroneously noisy eventfd and injecting duplicate interrupts.
> 
> Signed-off-by: David Woodhouse <dwmw@xxxxxxxxxxxx>

Acked-by: Peter Zijlstra (Intel) <peterz@xxxxxxxxxxxxx>

> ---
>  include/linux/wait.h | 12 +++++++++++-
>  kernel/sched/wait.c  | 17 ++++++++++++++++-
>  2 files changed, 27 insertions(+), 2 deletions(-)
> 
> diff --git a/include/linux/wait.h b/include/linux/wait.h
> index 27fb99cfeb02..fe10e8570a52 100644
> --- a/include/linux/wait.h
> +++ b/include/linux/wait.h
> @@ -22,6 +22,7 @@ int default_wake_function(struct wait_queue_entry *wq_entry, unsigned mode, int
>  #define WQ_FLAG_BOOKMARK	0x04
>  #define WQ_FLAG_CUSTOM		0x08
>  #define WQ_FLAG_DONE		0x10
> +#define WQ_FLAG_PRIORITY	0x20
>  
>  /*
>   * A single wait-queue entry structure:
> @@ -164,11 +165,20 @@ static inline bool wq_has_sleeper(struct wait_queue_head *wq_head)
>  
>  extern void add_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry);
>  extern void add_wait_queue_exclusive(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry);
> +extern void add_wait_queue_priority(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry);
>  extern void remove_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry);
>  
>  static inline void __add_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
>  {
> -	list_add(&wq_entry->entry, &wq_head->head);
> +	struct list_head *head = &wq_head->head;
> +	struct wait_queue_entry *wq;
> +
> +	list_for_each_entry(wq, &wq_head->head, entry) {
> +		if (!(wq->flags & WQ_FLAG_PRIORITY))
> +			break;
> +		head = &wq->entry;
> +	}
> +	list_add(&wq_entry->entry, head);
>  }
>  
>  /*
> diff --git a/kernel/sched/wait.c b/kernel/sched/wait.c
> index 01f5d3020589..183cc6ae68a6 100644
> --- a/kernel/sched/wait.c
> +++ b/kernel/sched/wait.c
> @@ -37,6 +37,17 @@ void add_wait_queue_exclusive(struct wait_queue_head *wq_head, struct wait_queue
>  }
>  EXPORT_SYMBOL(add_wait_queue_exclusive);
>  
> +void add_wait_queue_priority(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
> +{
> +	unsigned long flags;
> +
> +	wq_entry->flags |= WQ_FLAG_EXCLUSIVE | WQ_FLAG_PRIORITY;
> +	spin_lock_irqsave(&wq_head->lock, flags);
> +	__add_wait_queue(wq_head, wq_entry);
> +	spin_unlock_irqrestore(&wq_head->lock, flags);
> +}
> +EXPORT_SYMBOL_GPL(add_wait_queue_priority);
> +
>  void remove_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
>  {
>  	unsigned long flags;
> @@ -57,7 +68,11 @@ EXPORT_SYMBOL(remove_wait_queue);
>  /*
>   * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
>   * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
> - * number) then we wake all the non-exclusive tasks and one exclusive task.
> + * number) then we wake that number of exclusive tasks, and potentially all
> + * the non-exclusive tasks. Normally, exclusive tasks will be at the end of
> + * the list and any non-exclusive tasks will be woken first. A priority task
> + * may be at the head of the list, and can consume the event without any other
> + * tasks being woken.
>   *
>   * There are circumstances in which we can try to wake a task which has already
>   * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
> -- 
> 2.26.2
> 



[Index of Archives]     [KVM ARM]     [KVM ia64]     [KVM ppc]     [Virtualization Tools]     [Spice Development]     [Libvirt]     [Libvirt Users]     [Linux USB Devel]     [Linux Audio Users]     [Yosemite Questions]     [Linux Kernel]     [Linux SCSI]     [XFree86]

  Powered by Linux