On 09/02/2009 06:38 PM, oritw@xxxxxxxxxx wrote:
-struct nested_vmx {
- /* Has the level1 guest done vmon? */
+struct nested_vmx { /* Has the level1 guest done vmon? */
A \n died here.
bool vmon;
/* Has the level1 guest done vmclear? */
bool vmclear;
+
+ /* Are we running nested guest */
+ bool nested_mode;
+
+ /* L1 requested VMLAUNCH or VMRESUME but we didn't run L2 yet */
+ bool nested_run_pending;
+
+ /* flag indicating if there was a valid IDT after exiting from l2 */
+ bool nested_pending_valid_idt;
What does this mean? pending event?
+
+static inline int nested_cpu_has_vmx_tpr_shadow(struct kvm_vcpu *vcpu)
+{
+ return to_vmx(vcpu)->nested.l2_state->shadow_vmcs->
+ cpu_based_vm_exec_control& CPU_BASED_TPR_SHADOW;
+}
Don't we need to check if the host supports it too?
+static inline bool nested_vm_need_virtualize_apic_accesses(struct kvm_vcpu
+ *vcpu)
+{
+ struct shadow_vmcs *shadow = to_vmx(vcpu)->nested.l2_state->shadow_vmcs;
+
+ return (shadow->secondary_vm_exec_control&
+ SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)&&
+ to_vmx(vcpu)->nested.l2_state->shadow_vmcs->apic_access_addr != 0;
+}
Why check apic_access_addr?
+
+static inline int nested_cpu_has_vmx_ept(struct kvm_vcpu *vcpu)
+{
+ return to_vmx(vcpu)->nested.l2_state->shadow_vmcs->
+ secondary_vm_exec_control& SECONDARY_EXEC_ENABLE_EPT;
+}
Need to check if secondary controls enabled?
+static void vmx_set_irq(struct kvm_vcpu *vcpu)
+{
+ if (to_vmx(vcpu)->nested.nested_mode)
+ return;
Why?
Note if the guest didn't enable external interrupt exiting, we need to
inject as usual.
+static int nested_handle_pending_idt(struct kvm_vcpu *vcpu)
+{
Again the name is confusing. pending_event_injection?
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ int irq;
+ int type;
+ int errCodeValid;
+ u32 idt_vectoring_info;
+ u32 guest_intr;
+ bool nmi_window_open;
+ bool interrupt_window_open;
+
+ if (vmx->nested.nested_mode&& vmx->nested.nested_pending_valid_idt) {
+ idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
+ irq = idt_vectoring_info& VECTORING_INFO_VECTOR_MASK;
+ type = idt_vectoring_info& VECTORING_INFO_TYPE_MASK;
+ errCodeValid = idt_vectoring_info&
+ VECTORING_INFO_DELIVER_CODE_MASK;
+
+ guest_intr = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
+ nmi_window_open =
+ !(guest_intr& (GUEST_INTR_STATE_STI |
+ GUEST_INTR_STATE_MOV_SS |
+ GUEST_INTR_STATE_NMI));
+
+ interrupt_window_open =
+ ((vmcs_readl(GUEST_RFLAGS)& X86_EFLAGS_IF)&&
+ !(guest_intr& (GUEST_INTR_STATE_STI |
+ GUEST_INTR_STATE_MOV_SS)));
+
+ if (type == INTR_TYPE_EXT_INTR&& !interrupt_window_open) {
+ printk(KERN_INFO "IDT ignored, l2 interrupt window closed!\n");
+ return 0;
+ }
How can this happen? Unless it's on nested entry, in which case we need
to abort the entry.
+
#ifdef CONFIG_X86_64
#define R "r"
#define Q "q"
@@ -4646,6 +4842,15 @@ static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
+ nested_handle_pending_idt(vcpu);
You're not checking the return code (need to do that on entry).
+
+ if (vmx->nested.nested_mode) {
+ vmcs_writel(GUEST_CR0, vmx->nested.l2_state->shadow_vmcs->guest_cr0);
Might not be legal. We may also want to force-enable caching. Lastly,
don't we need to handle cr0.ts and ct0.mp specially to manage the fpu state?
+ if (vmx->nested.nested_mode)
+ vmx->nested.vmclear = 0;
+
Why?
free_vmcs:
@@ -5122,6 +5339,228 @@ static int shadow_vmcs_load(struct kvm_vcpu *vcpu)
return 0;
}
+void prepare_vmcs_12(struct kvm_vcpu *vcpu)
+{
+ struct shadow_vmcs *l2_shadow_vmcs =
+ to_vmx(vcpu)->nested.l2_state->shadow_vmcs;
+ struct shadow_vmcs *l1_shadow_vmcs =
+ to_vmx(vcpu)->nested.l1_state->shadow_vmcs;
+
+ l2_shadow_vmcs->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
+ l2_shadow_vmcs->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
+ l2_shadow_vmcs->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
+ l2_shadow_vmcs->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
+ l2_shadow_vmcs->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
+ l2_shadow_vmcs->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
+ l2_shadow_vmcs->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
+ l2_shadow_vmcs->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
+
+ l1_shadow_vmcs->host_es_selector = vmcs_read16(HOST_ES_SELECTOR);
+ l1_shadow_vmcs->host_cs_selector = vmcs_read16(HOST_CS_SELECTOR);
+ l1_shadow_vmcs->host_ss_selector = vmcs_read16(HOST_SS_SELECTOR);
+ l1_shadow_vmcs->host_ds_selector = vmcs_read16(HOST_DS_SELECTOR);
+ l1_shadow_vmcs->host_fs_selector = vmcs_read16(HOST_FS_SELECTOR);
+ l1_shadow_vmcs->host_gs_selector = vmcs_read16(HOST_GS_SELECTOR);
+ l1_shadow_vmcs->host_tr_selector = vmcs_read16(HOST_TR_SELECTOR);
+
+ l2_shadow_vmcs->tsc_offset = vmcs_read64(TSC_OFFSET);
+ l2_shadow_vmcs->guest_physical_address =
+ vmcs_read64(GUEST_PHYSICAL_ADDRESS);
+ l2_shadow_vmcs->vmcs_link_pointer = vmcs_read64(VMCS_LINK_POINTER);
+ l2_shadow_vmcs->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
+ if (vmcs_config.vmentry_ctrl& VM_ENTRY_LOAD_IA32_PAT)
+ l2_shadow_vmcs->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
+ l2_shadow_vmcs->cr3_target_count = vmcs_read32(CR3_TARGET_COUNT);
+ l2_shadow_vmcs->vm_entry_intr_info_field =
+ vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
+ l2_shadow_vmcs->vm_entry_exception_error_code =
+ vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE);
+ l2_shadow_vmcs->vm_entry_instruction_len =
+ vmcs_read32(VM_ENTRY_INSTRUCTION_LEN);
+ l2_shadow_vmcs->vm_instruction_error =
+ vmcs_read32(VM_INSTRUCTION_ERROR);
+ l2_shadow_vmcs->vm_exit_reason = vmcs_read32(VM_EXIT_REASON);
+ l2_shadow_vmcs->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
+ l2_shadow_vmcs->vm_exit_intr_error_code =
+ vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
+ l2_shadow_vmcs->idt_vectoring_info_field =
+ vmcs_read32(IDT_VECTORING_INFO_FIELD);
+ l2_shadow_vmcs->idt_vectoring_error_code =
+ vmcs_read32(IDT_VECTORING_ERROR_CODE);
+ l2_shadow_vmcs->vm_exit_instruction_len =
+ vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
+ l2_shadow_vmcs->vmx_instruction_info =
+ vmcs_read32(VMX_INSTRUCTION_INFO);
+ l2_shadow_vmcs->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
+ l2_shadow_vmcs->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
+ l2_shadow_vmcs->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
+ l2_shadow_vmcs->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
+ l2_shadow_vmcs->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
+ l2_shadow_vmcs->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
+ l2_shadow_vmcs->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
+ l2_shadow_vmcs->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
+ l2_shadow_vmcs->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
+ l2_shadow_vmcs->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
+ l2_shadow_vmcs->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
+ l2_shadow_vmcs->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
+ l2_shadow_vmcs->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
+ l2_shadow_vmcs->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
+ l2_shadow_vmcs->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
+ l2_shadow_vmcs->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
+ l2_shadow_vmcs->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
+ l2_shadow_vmcs->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
+ l2_shadow_vmcs->guest_interruptibility_info =
+ vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
+ l2_shadow_vmcs->guest_activity_state =
+ vmcs_read32(GUEST_ACTIVITY_STATE);
+ l2_shadow_vmcs->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
+
+ l1_shadow_vmcs->host_ia32_sysenter_cs =
+ vmcs_read32(HOST_IA32_SYSENTER_CS);
+
+ l2_shadow_vmcs->cr0_read_shadow = vmcs_readl(CR0_READ_SHADOW);
+ l2_shadow_vmcs->cr4_read_shadow = vmcs_readl(CR4_READ_SHADOW);
+ l2_shadow_vmcs->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+ l2_shadow_vmcs->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
+ l2_shadow_vmcs->guest_cr0 = vmcs_readl(GUEST_CR0);
+
+ l2_shadow_vmcs->guest_cr4 = vmcs_readl(GUEST_CR4);
+ l2_shadow_vmcs->guest_es_base = vmcs_readl(GUEST_ES_BASE);
+ l2_shadow_vmcs->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
+ l2_shadow_vmcs->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
+ l2_shadow_vmcs->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
+ l2_shadow_vmcs->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
+ l2_shadow_vmcs->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
+ l2_shadow_vmcs->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
+ l2_shadow_vmcs->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
+ l2_shadow_vmcs->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
+ l2_shadow_vmcs->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
+ l2_shadow_vmcs->guest_dr7 = vmcs_readl(GUEST_DR7);
+ l2_shadow_vmcs->guest_rsp = vmcs_readl(GUEST_RSP);
+ l2_shadow_vmcs->guest_rip = vmcs_readl(GUEST_RIP);
+ l2_shadow_vmcs->guest_rflags = vmcs_readl(GUEST_RFLAGS);
+ l2_shadow_vmcs->guest_pending_dbg_exceptions =
+ vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
+ l2_shadow_vmcs->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
+ l2_shadow_vmcs->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
+
+ l1_shadow_vmcs->host_cr0 = vmcs_readl(HOST_CR0);
+ l1_shadow_vmcs->host_cr3 = vmcs_readl(HOST_CR3);
+ l1_shadow_vmcs->host_cr4 = vmcs_readl(HOST_CR4);
+ l1_shadow_vmcs->host_fs_base = vmcs_readl(HOST_FS_BASE);
+ l1_shadow_vmcs->host_gs_base = vmcs_readl(HOST_GS_BASE);
+ l1_shadow_vmcs->host_tr_base = vmcs_readl(HOST_TR_BASE);
+ l1_shadow_vmcs->host_gdtr_base = vmcs_readl(HOST_GDTR_BASE);
+ l1_shadow_vmcs->host_idtr_base = vmcs_readl(HOST_IDTR_BASE);
+ l1_shadow_vmcs->host_ia32_sysenter_esp =
+ vmcs_readl(HOST_IA32_SYSENTER_ESP);
+ l1_shadow_vmcs->host_ia32_sysenter_eip =
+ vmcs_readl(HOST_IA32_SYSENTER_EIP);
+ l1_shadow_vmcs->host_rsp = vmcs_readl(HOST_RSP);
+ l1_shadow_vmcs->host_rip = vmcs_readl(HOST_RIP);
+}
Can't we do it lazily? Only read these on demand?
+
+int load_vmcs_common(struct shadow_vmcs *src)
+{
+ vmcs_write16(GUEST_ES_SELECTOR, src->guest_es_selector);
+ vmcs_write16(GUEST_CS_SELECTOR, src->guest_cs_selector);
+ vmcs_write16(GUEST_SS_SELECTOR, src->guest_ss_selector);
+ vmcs_write16(GUEST_DS_SELECTOR, src->guest_ds_selector);
+ vmcs_write16(GUEST_FS_SELECTOR, src->guest_fs_selector);
+ vmcs_write16(GUEST_GS_SELECTOR, src->guest_gs_selector);
+ vmcs_write16(GUEST_LDTR_SELECTOR, src->guest_ldtr_selector);
+ vmcs_write16(GUEST_TR_SELECTOR, src->guest_tr_selector);
+
+ vmcs_write64(VMCS_LINK_POINTER, src->vmcs_link_pointer);
+ vmcs_write64(GUEST_IA32_DEBUGCTL, src->guest_ia32_debugctl);
+
+ if (vmcs_config.vmentry_ctrl& VM_ENTRY_LOAD_IA32_PAT)
+ vmcs_write64(GUEST_IA32_PAT, src->guest_ia32_pat);
+
+ vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, src->vm_entry_msr_load_count);
+ vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, src->vm_entry_intr_info_field);
+ vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
+ src->vm_entry_exception_error_code);
+ vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, src->vm_entry_instruction_len);
+
+ vmcs_write32(GUEST_ES_LIMIT, src->guest_es_limit);
+ vmcs_write32(GUEST_CS_LIMIT, src->guest_cs_limit);
+ vmcs_write32(GUEST_SS_LIMIT, src->guest_ss_limit);
+ vmcs_write32(GUEST_DS_LIMIT, src->guest_ds_limit);
+ vmcs_write32(GUEST_FS_LIMIT, src->guest_fs_limit);
+ vmcs_write32(GUEST_GS_LIMIT, src->guest_gs_limit);
+ vmcs_write32(GUEST_LDTR_LIMIT, src->guest_ldtr_limit);
+ vmcs_write32(GUEST_TR_LIMIT, src->guest_tr_limit);
+ vmcs_write32(GUEST_GDTR_LIMIT, src->guest_gdtr_limit);
+ vmcs_write32(GUEST_IDTR_LIMIT, src->guest_idtr_limit);
+ vmcs_write32(GUEST_ES_AR_BYTES, src->guest_es_ar_bytes);
+ vmcs_write32(GUEST_CS_AR_BYTES, src->guest_cs_ar_bytes);
+ vmcs_write32(GUEST_SS_AR_BYTES, src->guest_ss_ar_bytes);
+ vmcs_write32(GUEST_DS_AR_BYTES, src->guest_ds_ar_bytes);
+ vmcs_write32(GUEST_FS_AR_BYTES, src->guest_fs_ar_bytes);
+ vmcs_write32(GUEST_GS_AR_BYTES, src->guest_gs_ar_bytes);
+ vmcs_write32(GUEST_LDTR_AR_BYTES, src->guest_ldtr_ar_bytes);
+ vmcs_write32(GUEST_TR_AR_BYTES, src->guest_tr_ar_bytes);
+ vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
+ src->guest_interruptibility_info);
+ vmcs_write32(GUEST_ACTIVITY_STATE, src->guest_activity_state);
+ vmcs_write32(GUEST_SYSENTER_CS, src->guest_sysenter_cs);
+
+ vmcs_writel(GUEST_ES_BASE, src->guest_es_base);
+ vmcs_writel(GUEST_CS_BASE, src->guest_cs_base);
+ vmcs_writel(GUEST_SS_BASE, src->guest_ss_base);
+ vmcs_writel(GUEST_DS_BASE, src->guest_ds_base);
+ vmcs_writel(GUEST_FS_BASE, src->guest_fs_base);
+ vmcs_writel(GUEST_GS_BASE, src->guest_gs_base);
+ vmcs_writel(GUEST_LDTR_BASE, src->guest_ldtr_base);
+ vmcs_writel(GUEST_TR_BASE, src->guest_tr_base);
+ vmcs_writel(GUEST_GDTR_BASE, src->guest_gdtr_base);
+ vmcs_writel(GUEST_IDTR_BASE, src->guest_idtr_base);
+ vmcs_writel(GUEST_DR7, src->guest_dr7);
+ vmcs_writel(GUEST_RSP, src->guest_rsp);
+ vmcs_writel(GUEST_RIP, src->guest_rip);
+ vmcs_writel(GUEST_RFLAGS, src->guest_rflags);
+ vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
+ src->guest_pending_dbg_exceptions);
+ vmcs_writel(GUEST_SYSENTER_ESP, src->guest_sysenter_esp);
+ vmcs_writel(GUEST_SYSENTER_EIP, src->guest_sysenter_eip);
+
+ return 0;
+}
If we do it lazily, we'll only need to reload bits that have changed.
struct level_state *create_state(void)
{
struct level_state *state = NULL;
@@ -5176,6 +5615,685 @@ int create_l2_state(struct kvm_vcpu *vcpu)
return 0;
}
+int prepare_vmcs_02(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ struct shadow_vmcs *src = vmx->nested.l2_state->shadow_vmcs;
+ u32 exec_control;
+
+ if (!src) {
+ printk(KERN_INFO "%s: Error no shadow vmcs\n", __func__);
+ return 1;
+ }
+
+ load_vmcs_common(src);
+
+ if (cpu_has_vmx_vpid()&& vmx->nested.l2_state->vpid != 0)
+ vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.l2_state->vpid);
+
+ if (vmx->nested.l2_state->io_bitmap_a)
+ vmcs_write64(IO_BITMAP_A, vmx->nested.l2_state->io_bitmap_a);
+
+ if (vmx->nested.l2_state->io_bitmap_b)
+ vmcs_write64(IO_BITMAP_B, vmx->nested.l2_state->io_bitmap_b);
+
+ if (vmx->nested.l2_state->msr_bitmap)
+ vmcs_write64(MSR_BITMAP, vmx->nested.l2_state->msr_bitmap);
Don't we need to combine the host and guest msr bitmaps and I/O
bitmaps? If the host doesn't allow an msr or I/O access to the guest,
it shouldn't allow it to nested guests.
+
+ if (src->vm_entry_msr_load_count> 0) {
+ struct page *page;
+
+ page = nested_get_page(vcpu,
+ src->vm_entry_msr_load_addr);
+ if (!page)
+ return 1;
+
+ vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, page_to_phys(page));
Luckily we don't use the msr autoload stuff. If we did we'd have to
merge it too. But We have to emulate those loads (via vmx_set_msr), the
guest can easily load bad msrs which would kill the host.
+ if (src->virtual_apic_page_addr != 0) {
+ struct page *page;
+
+ page = nested_get_page(vcpu,
+ src->virtual_apic_page_addr);
+ if (!page)
+ return 1;
+
+ vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, page_to_phys(page));
+
+ kvm_release_page_clean(page);
+ } else {
+ vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
+ src->virtual_apic_page_addr);
+ }
Don't understand the special zero value.
+
+ vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
+ (vmx->nested.l1_state->shadow_vmcs->pin_based_vm_exec_control |
+ src->pin_based_vm_exec_control));
+
+ exec_control = vmx->nested.l1_state->shadow_vmcs->cpu_based_vm_exec_control;
+
+ exec_control&= ~CPU_BASED_VIRTUAL_INTR_PENDING;
+
+ exec_control&= ~CPU_BASED_VIRTUAL_NMI_PENDING;
+
+ exec_control&= ~CPU_BASED_TPR_SHADOW;
Why?
+ if (enable_vpid) {
+ if (vmx->nested.l2_state->vpid == 0) {
+ allocate_vpid(vmx);
+ vmx->nested.l2_state->vpid = vmx->vpid;
What if the guest has a nonzero vpid?
+static int nested_vmx_vmexit(struct kvm_vcpu *vcpu,
+ bool is_interrupt)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ int initial_pfu_active = vcpu->fpu_active;
+
+ if (!vmx->nested.nested_mode) {
+ printk(KERN_INFO "WARNING: %s called but not in nested mode\n",
+ __func__);
+ return 0;
+ }
+
+ save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
+
+ sync_cached_regs_to_vmcs(vcpu);
+
+ prepare_vmcs_12(vcpu);
+ if (is_interrupt)
+ vmx->nested.l2_state->shadow_vmcs->vm_exit_reason =
+ EXIT_REASON_EXTERNAL_INTERRUPT;
Need to auto-ack the interrupt if requested by the guest.
--
I have a truly marvellous patch that fixes the bug which this
signature is too narrow to contain.
--
To unsubscribe from this list: send the line "unsubscribe kvm" in
the body of a message to majordomo@xxxxxxxxxxxxxxx
More majordomo info at http://vger.kernel.org/majordomo-info.html