Sparse complains that __hyp_this_cpu_ptr() returns something that is flagged noderef and not in the correct address space (both being the result of the __percpu annotation). Pretend that __hyp_this_cpu_ptr() knows what it is doing by forcefully casting the pointer with __kernel __force. Signed-off-by: Marc Zyngier <maz@xxxxxxxxxx> --- arch/arm64/include/asm/kvm_asm.h | 9 +++++++-- 1 file changed, 7 insertions(+), 2 deletions(-) diff --git a/arch/arm64/include/asm/kvm_asm.h b/arch/arm64/include/asm/kvm_asm.h index 0c9b5fc4ba0a..82691406d493 100644 --- a/arch/arm64/include/asm/kvm_asm.h +++ b/arch/arm64/include/asm/kvm_asm.h @@ -81,12 +81,17 @@ extern u32 __kvm_get_mdcr_el2(void); extern char __smccc_workaround_1_smc[__SMCCC_WORKAROUND_1_SMC_SZ]; -/* Home-grown __this_cpu_{ptr,read} variants that always work at HYP */ +/* + * Home-grown __this_cpu_{ptr,read} variants that always work at HYP, + * provided that sym is really a *symbol* and not a pointer obtained from + * a data structure. As for SHIFT_PERCPU_PTR(), the creative casting keeps + * sparse quiet. + */ #define __hyp_this_cpu_ptr(sym) \ ({ \ void *__ptr = hyp_symbol_addr(sym); \ __ptr += read_sysreg(tpidr_el2); \ - (typeof(&sym))__ptr; \ + (typeof(sym) __kernel __force *)__ptr; \ }) #define __hyp_this_cpu_read(sym) \ -- 2.26.2