At the moment we trap *every* access to the flash memory, even when we are in array read mode (which just directly copies from the storage array to the guest). To improve performance, allow cacheable mappings and to avoid fatal traps on unsupported instructions (on ARM), export a read-only memslot to the guest when the flash is in read-array mode. A guest does not need to trap on read accesses then. A write command (which always traps) will revoke this mapping if the read mode changes. This reduces the number of read traps from more than 800,000 to a few hundreds when booting into the UEFI shell. Signed-off-by: Andre Przywara <andre.przywara@xxxxxxx> --- hw/cfi_flash.c | 47 +++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 47 insertions(+) diff --git a/hw/cfi_flash.c b/hw/cfi_flash.c index 3c76c04a..7faecdfb 100644 --- a/hw/cfi_flash.c +++ b/hw/cfi_flash.c @@ -8,6 +8,7 @@ #include "kvm/kvm.h" #include "kvm/kvm-arch.h" +#include "kvm/kvm-cpu.h" #include "kvm/devices.h" #include "kvm/fdt.h" #include "kvm/mutex.h" @@ -139,6 +140,7 @@ struct cfi_flash_device { enum cfi_flash_state state; enum cfi_read_mode read_mode; u8 sr; + bool is_mapped; }; static int nr_erase_blocks(struct cfi_flash_device *sfdev) @@ -437,6 +439,43 @@ static void cfi_flash_write(struct cfi_flash_device *sfdev, u16 command, } } +/* + * If we are in ARRAY_READ mode, we can map the flash array directly + * into the guest, just as read-only. This greatly improves read + * performance, and avoids problems with exits due to accesses from + * load instructions without syndrome information (on ARM). + * Also it could allow code to be executed XIP in there. + */ +static int map_flash_memory(struct kvm *kvm, struct cfi_flash_device *sfdev) +{ + int ret; + + ret = kvm__register_mem(kvm, sfdev->base_addr, sfdev->size, + sfdev->flash_memory, + KVM_MEM_TYPE_RAM | KVM_MEM_TYPE_READONLY); + if (!ret) + sfdev->is_mapped = true; + + return ret; +} + +/* + * Any write access changing the read mode would need to bring us back to + * "trap everything", as the CFI query read need proper handholding. + */ +static int unmap_flash_memory(struct kvm *kvm, struct cfi_flash_device *sfdev) +{ + int ret; + + ret = kvm__destroy_mem(kvm, sfdev->base_addr, sfdev->size, + sfdev->flash_memory); + + if (!ret) + sfdev->is_mapped = false; + + return ret; +} + static void cfi_flash_mmio(struct kvm_cpu *vcpu, u64 addr, u8 *data, u32 len, u8 is_write, void *context) @@ -467,6 +506,12 @@ static void cfi_flash_mmio(struct kvm_cpu *vcpu, cfi_flash_write(sfdev, value & 0xffff, faddr, data, len); + /* Adjust our mapping status accordingly. */ + if (!sfdev->is_mapped && sfdev->read_mode == READ_ARRAY) + map_flash_memory(vcpu->kvm, sfdev); + else if (sfdev->is_mapped && sfdev->read_mode != READ_ARRAY) + unmap_flash_memory(vcpu->kvm, sfdev); + mutex_unlock(&sfdev->mutex); } @@ -543,6 +588,8 @@ static struct cfi_flash_device *create_flash_device_file(struct kvm *kvm, sfdev->read_mode = READ_ARRAY; sfdev->sr = CFI_STATUS_READY; + map_flash_memory(kvm, sfdev); + value = roundup(nr_erase_blocks(sfdev), BITS_PER_LONG) / 8; sfdev->lock_bm = malloc(value); memset(sfdev->lock_bm, 0, value); -- 2.17.1