Re: [PATCH kvmtool v3] Add emulation for CFI compatible flash memory

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



Hi,

I've tested this patch by running badblocks and fio on a flash device inside a
guest, everything worked as expected.

I've also looked at the flowcharts for device operation from Intel Application
Note 646, pages 12-21, and they seem implemented correctly.

A few minor issues below.

On 2/21/20 4:55 PM, Andre Przywara wrote:
> From: Raphael Gault <raphael.gault@xxxxxxx>
>
> The EDK II UEFI firmware implementation requires some storage for the EFI
> variables, which is typically some flash storage.
> Since this is already supported on the EDK II side, we add a CFI flash
> emulation to kvmtool.
> This is backed by a file, specified via the --flash or -F command line
> option. Any flash writes done by the guest will immediately be reflected
> into this file (kvmtool mmap's the file).
> The flash will be limited to the nearest power-of-2 size, so only the
> first 2 MB of a 3 MB file will be used.
>
> This implements a CFI flash using the "Intel/Sharp extended command
> set", as specified in:
> - JEDEC JESD68.01
> - JEDEC JEP137B
> - Intel Application Note 646
> Some gaps in those specs have been filled by looking at real devices and
> other implementations (QEMU, Linux kernel driver).
>
> At the moment this relies on DT to advertise the base address of the
> flash memory (mapped into the MMIO address space) and is only enabled
> for ARM/ARM64. The emulation itself is architecture agnostic, though.
>
> This is one missing piece toward a working UEFI boot with kvmtool on
> ARM guests, the other is to provide writable PCI BARs, which is WIP.
>
> Signed-off-by: Raphael Gault <raphael.gault@xxxxxxx>
> [Andre: rewriting and fixing]
> Signed-off-by: Andre Przywra <andre.przywara@xxxxxxx>
> ---
> Hi,
>
> an update fixing Alexandru's review comments (many thanks for those!)
> The biggest change code-wise is the split of the MMIO handler into three
> different functions. Another significant change is the rounding *down* of
> the present flash file size to the nearest power-of-two, to match flash
> hardware chips and Linux' expectations.
>
> Cheers,
> Andre
>
> Changelog v2 .. v3:
> - Breaking MMIO handling into three separate functions.
> - Assing the flash base address in the memory map, but stay at 32 MB for now.
>   The MMIO area has been moved up to 48 MB, to never overlap with the
>   flash.
> - Impose a limit of 16 MB for the flash size, mostly to fit into the
>   (for now) fixed memory map.
> - Trim flash size down to nearest power-of-2, to match hardware.
> - Announce forced flash size trimming.
> - Rework the CFI query table slightly, to add the addresses as array
>   indicies.
> - Fix error handling when creating the flash device.
> - Fix pow2_size implementation for 0 and 1 as input values.
> - Fix write buffer size handling.
> - Improve some comments.
>
> Changelog v1 .. v2:
> - Add locking for MMIO handling.
> - Fold flash read into handler.
> - Move pow2_size() into generic header.
> - Spell out flash base address.
>
>  Makefile                          |   6 +
>  arm/include/arm-common/kvm-arch.h |   8 +-
>  builtin-run.c                     |   2 +
>  hw/cfi_flash.c                    | 576 ++++++++++++++++++++++++++++++
>  include/kvm/kvm-config.h          |   1 +
>  include/kvm/util.h                |   8 +
>  6 files changed, 599 insertions(+), 2 deletions(-)
>  create mode 100644 hw/cfi_flash.c
>
> diff --git a/Makefile b/Makefile
> index 3862112c..7ed6fb5e 100644
> --- a/Makefile
> +++ b/Makefile
> @@ -170,6 +170,7 @@ ifeq ($(ARCH), arm)
>  	CFLAGS		+= -march=armv7-a
>  
>  	ARCH_WANT_LIBFDT := y
> +	ARCH_HAS_FLASH_MEM := y
>  endif
>  
>  # ARM64
> @@ -182,6 +183,7 @@ ifeq ($(ARCH), arm64)
>  	ARCH_INCLUDE	+= -Iarm/aarch64/include
>  
>  	ARCH_WANT_LIBFDT := y
> +	ARCH_HAS_FLASH_MEM := y
>  endif
>  
>  ifeq ($(ARCH),mips)
> @@ -261,6 +263,10 @@ ifeq (y,$(ARCH_HAS_FRAMEBUFFER))
>  	endif
>  endif
>  
> +ifeq (y,$(ARCH_HAS_FLASH_MEM))
> +	OBJS	+= hw/cfi_flash.o
> +endif
> +
>  ifeq ($(call try-build,$(SOURCE_ZLIB),$(CFLAGS),$(LDFLAGS) -lz),y)
>  	CFLAGS_DYNOPT	+= -DCONFIG_HAS_ZLIB
>  	LIBS_DYNOPT	+= -lz
> diff --git a/arm/include/arm-common/kvm-arch.h b/arm/include/arm-common/kvm-arch.h
> index b9d486d5..d84e50cd 100644
> --- a/arm/include/arm-common/kvm-arch.h
> +++ b/arm/include/arm-common/kvm-arch.h
> @@ -8,7 +8,8 @@
>  #include "arm-common/gic.h"
>  
>  #define ARM_IOPORT_AREA		_AC(0x0000000000000000, UL)
> -#define ARM_MMIO_AREA		_AC(0x0000000000010000, UL)
> +#define ARM_FLASH_AREA		_AC(0x0000000002000000, UL)
> +#define ARM_MMIO_AREA		_AC(0x0000000003000000, UL)
>  #define ARM_AXI_AREA		_AC(0x0000000040000000, UL)
>  #define ARM_MEMORY_AREA		_AC(0x0000000080000000, UL)
>  
> @@ -21,7 +22,10 @@
>  #define ARM_GIC_DIST_SIZE	0x10000
>  #define ARM_GIC_CPUI_SIZE	0x20000
>  
> -#define ARM_IOPORT_SIZE		(ARM_MMIO_AREA - ARM_IOPORT_AREA)
> +#define KVM_FLASH_MMIO_BASE	ARM_FLASH_AREA
> +#define KVM_FLASH_MAX_SIZE	(ARM_MMIO_AREA - ARM_FLASH_AREA)
> +
> +#define ARM_IOPORT_SIZE		(1U << 16)
>  #define ARM_VIRTIO_MMIO_SIZE	(ARM_AXI_AREA - (ARM_MMIO_AREA + ARM_GIC_SIZE))
>  #define ARM_PCI_CFG_SIZE	(1ULL << 24)
>  #define ARM_PCI_MMIO_SIZE	(ARM_MEMORY_AREA - \
> diff --git a/builtin-run.c b/builtin-run.c
> index f8dc6c72..df8c6741 100644
> --- a/builtin-run.c
> +++ b/builtin-run.c
> @@ -138,6 +138,8 @@ void kvm_run_set_wrapper_sandbox(void)
>  			"Kernel command line arguments"),		\
>  	OPT_STRING('f', "firmware", &(cfg)->firmware_filename, "firmware",\
>  			"Firmware image to boot in virtual machine"),	\
> +	OPT_STRING('F', "flash", &(cfg)->flash_filename, "flash",\
> +			"Flash image to present to virtual machine"),	\
>  									\
>  	OPT_GROUP("Networking options:"),				\
>  	OPT_CALLBACK_DEFAULT('n', "network", NULL, "network params",	\
> diff --git a/hw/cfi_flash.c b/hw/cfi_flash.c
> new file mode 100644
> index 00000000..f66257c6
> --- /dev/null
> +++ b/hw/cfi_flash.c
> @@ -0,0 +1,576 @@
> +#include <stdbool.h>
> +#include <stdlib.h>
> +#include <string.h>
> +#include <linux/bitops.h>
> +#include <linux/err.h>
> +#include <linux/sizes.h>
> +#include <linux/types.h>
> +
> +#include "kvm/kvm.h"
> +#include "kvm/kvm-arch.h"
> +#include "kvm/devices.h"
> +#include "kvm/fdt.h"
> +#include "kvm/mutex.h"
> +#include "kvm/util.h"
> +
> +/* The EDK2 driver hardcodes two 16-bit chips on a 32-bit bus. */
> +#define CFI_NR_FLASH_CHIPS			2
> +
> +/* We always emulate a 32 bit bus width. */
> +#define CFI_BUS_WIDTH				4
> +
> +/* The *effective* size of an erase block (over all chips) */
> +#define FLASH_BLOCK_SIZE			SZ_64K
> +
> +#define PROGRAM_BUFF_SIZE_BITS			7
> +#define PROGRAM_BUFF_SIZE			(1U << PROGRAM_BUFF_SIZE_BITS)
> +
> +/* CFI commands */
> +#define CFI_CMD_LOCK_BLOCK			0x01
> +#define CFI_CMD_ALTERNATE_WORD_PROGRAM_SETUP	0x10
> +#define CFI_CMD_BLOCK_ERASE_SETUP		0x20
> +#define CFI_CMD_WORD_PROGRAM_SETUP		0x40
> +#define CFI_CMD_CLEAR_STATUS_REGISTER		0x50
> +#define CFI_CMD_LOCK_BLOCK_SETUP		0x60
> +#define CFI_CMD_READ_STATUS_REGISTER		0x70
> +#define CFI_CMD_READ_JEDEC			0x90
> +#define CFI_CMD_READ_CFI_QUERY			0x98
> +#define CFI_CMD_BUFFERED_PROGRAM_CONFIRM	0xd0
> +#define CFI_CMD_BLOCK_ERASE_CONFIRM		0xd0
> +#define CFI_CMD_UNLOCK_BLOCK			0xd0

Can we express the three defines above that have the same value as having the
value of the first define (like #define CFI_CMD_UNLOCK_BLOCK
CFI_CMD_BUFFERED_PROGRAM_CONFIRM), so people won't think we've made a mistake? How
about we use one define, CFI_CMD_CONFIRM?

> +#define CFI_CMD_BUFFERED_PROGRAM_SETUP		0xe8
> +#define CFI_CMD_READ_ARRAY			0xff
> +
> +/*
> + * CFI query table contents, as far as it is constant.
> + */
> +#define CFI_GEOM_OFFSET				0x27
> +static u8 cfi_query_table[] = {
> +		/* CFI query identification string */
> +	[0x10] = 'Q', 'R', 'Y',		/* ID string */
> +	0x01, 0x00,		/* primary command set: Intel/Sharp extended */
> +	0x31, 0x00,		/* address of primary extended query table */
> +	0x00, 0x00,		/* alternative command set: unused */
> +	0x00, 0x00,		/* address of alternative extended query table*/
> +		/* system interface information */
> +	[0x1b] = 0x45,			/* minimum Vcc voltage: 4.5V */
> +	0x55,			/* maximum Vcc voltage: 5.5V */
> +	0x00,			/* minimum Vpp voltage: 0.0V (unused) */
> +	0x00,			/* maximum Vpp voltage: 0.0V *(unused) */
> +	0x01,			/* timeout for single word program: 2 us */
> +	0x01,			/* timeout for multi-byte program: 2 us */
> +	0x01,			/* timeout for block erase: 2 ms */
> +	0x00,			/* timeout for full chip erase: not supported */
> +	0x00,			/* max timeout for single word program: 1x */
> +	0x00,			/* max timeout for mulit-byte program: 1x */
> +	0x00,			/* max timeout for block erase: 1x */
> +	0x00,			/* max timeout for chip erase: not supported */
> +		/* flash geometry information */
> +	[0x27] = 0x00,		/* size in power-of-2 bytes, filled later */
> +	0x05, 0x00,		/* interface description: 32 and 16 bits */
> +	PROGRAM_BUFF_SIZE_BITS + 1 - CFI_NR_FLASH_CHIPS, 0x00,

>From JEDEC 6801: "Maximum number of bytes in multi-byte program = 2^n".What caught
my eye was the fact that it's mixing bits and numbers. Shouldn't we subtract
log2(CFI_NR_FLASH_CHIPS)? Did I misunderstand something?

> +				/* number of bytes in write buffer */
> +	0x01,			/* one erase block region */
> +	0x00, 0x00, 0x00, 0x00, /* number and size of erase blocks, filled */

Nitpicking, but the world "filled" is misleading - we're not "filling in" the
number in the struct, but rather we're dynamically generating it when the value is
read by the guest. How about replacing "filled" with "generated"?

Also, the fact that we're generating at runtime the attributes that are unique to
a flash file (basically, the size) lead me to believe that we support more than
one flash device. However, that is not case, because we only save the last file
name specified on the command line. Are there any plans to support multiple flash
devices in the future?

> +		/* Intel primary algorithm extended query table */
> +	[0x31] = 'P', 'R', 'I',
> +	'1', '0',		/* version 1.0 */
> +	0xa0, 0x00, 0x00, 0x00, /* optional features: instant lock & pm-read */
> +	0x00,			/* no functions after suspend */
> +	0x01, 0x00,		/* only lock bit supported */
> +	0x50,			/* best Vcc value: 5.0V */
> +	0x00,			/* best Vpp value: 0.0V (unused) */
> +	0x01,			/* number of protection register fields */
> +	0x00, 0x00, 0x00, 0x00,	/* protection field 1 description */
> +};

I've been looking at Table 5 from Intel Application Note 646 and after byte D of
the Intel primary algorithm extended query table I see that the fields are
"Reserved for future versions of the SCS Specification".

> +

Extra empty line?

> +
> +/*
> + * Those states represent a subset of the CFI flash state machine.
> + */
> +enum cfi_flash_state {
> +	READY,
> +	LOCK_SETUP,
> +	WP_SETUP,
> +	BP_SETUP,
> +	BP_LOAD,
> +	ERASE_SETUP,
> +};
> +
> +/*
> + * The device can be in several **Read** modes.
> + * We don't implement the asynchronous burst mode.
> + */
> +enum cfi_read_mode {
> +	READ_ARRAY,
> +	READ_STATUS,
> +	READ_DEVICE_ID,
> +	READ_QUERY,
> +};
> +
> +struct cfi_flash_device {
> +	struct device_header	dev_hdr;
> +	/* Protects the CFI state machine variables in this data structure. */
> +	struct mutex		mutex;
> +	u64			base_addr;
> +	u32			size;
> +
> +	void			*flash_memory;
> +	u8			program_buffer[PROGRAM_BUFF_SIZE];
> +	unsigned long		*lock_bm;
> +	u64			last_address;
> +	unsigned int		buff_written;
> +	unsigned int		program_length;
> +
> +	enum cfi_flash_state	state;
> +	enum cfi_read_mode	read_mode;
> +	u16			rcr;
> +	u8			sr;

I'm writing this here, because it applies to all the places where sr is set. I
find myself constantly checking flowchart B6 from Intel Application Note 646, page
18. How about we use defines instead of magic numbers like 0x10, 0x12, 0x30 or 0x80?

> +};
> +
> +static int nr_erase_blocks(struct cfi_flash_device *sfdev)
> +{
> +	return sfdev->size / FLASH_BLOCK_SIZE;
> +}
> +
> +/*
> + * CFI queries always deal with one byte of information, possibly mirrored
> + * to other bytes on the bus. This is dealt with in the callers.
> + * The address provided is the one for 8-bit addressing, and would need to
> + * be adjusted for wider accesses.
> + */
> +static u8 read_cfi(struct cfi_flash_device *sfdev, u64 addr)
> +{
> +	if (addr < 0x10)		/* CFI information starts at 0x10 */
> +		return 0;

There's no need for that, elements 0-15 are already zero in cfi_query_table.

> +
> +	if (addr > sizeof(cfi_query_table)) {

We have the macro ARRAY_SIZE in util.h for that.

> +		pr_debug("CFI query read access beyond the end of table");
> +		return 0;
> +	}
> +
> +	/* Fixup dynamic information in the geometry part of the table. */
> +	switch (addr) {
> +	case CFI_GEOM_OFFSET:		/* device size in bytes, power of two */
> +		return pow2_size(sfdev->size / CFI_NR_FLASH_CHIPS);
> +	case CFI_GEOM_OFFSET + 6:	/* number of erase blocks, minus one */
> +		return (nr_erase_blocks(sfdev) - 1) & 0xff;

I'm not really sure why this is masking out all bytes but the first one. And why
it does that only for this statement and another one below. Isn't this function
returning an u8 already?

> +	case CFI_GEOM_OFFSET + 7:
> +		return (nr_erase_blocks(sfdev) - 1) >> 8;
> +	case CFI_GEOM_OFFSET + 8:	/* erase block size, in units of 256 */
> +		return ((FLASH_BLOCK_SIZE / 256 ) / CFI_NR_FLASH_CHIPS) & 0xff;

Same question about the mask.

> +	case CFI_GEOM_OFFSET + 9:
> +		return ((FLASH_BLOCK_SIZE / 256 ) / CFI_NR_FLASH_CHIPS) >> 8;
> +	}
> +
> +	return cfi_query_table[addr];
> +}

The CFI_GEOM_OFFSET doesn't really tell me anything. On the other hand,
CFI_GEOM_DEVICE_SIZE (for example) is much more suggestive. All the magic numbers
in this function could be replaced by defines, which would make the comments
redundant and the code much easier to read. Adding 1 + 2 + 2 + 1 + 2 shouldn't be
something that you have to do to when trying to understand the code.

> +
> +static bool block_is_locked(struct cfi_flash_device *sfdev, u64 addr)
> +{
> +	int block_nr = addr / FLASH_BLOCK_SIZE;
> +
> +	return test_bit(block_nr, sfdev->lock_bm);
> +}
> +
> +#define DEV_ID_MASK 0x7ff
> +static u16 read_dev_id(struct cfi_flash_device *sfdev, u64 addr)
> +{
> +	switch ((addr & DEV_ID_MASK) / CFI_BUS_WIDTH) {
> +	case 0x0:				/* vendor ID */
> +		return 0x0000;
> +	case 0x1:				/* device ID */
> +		return 0xffff;
> +	case 0x2:
> +		return block_is_locked(sfdev, addr & ~DEV_ID_MASK);
> +	case 0x5:
> +		return sfdev->rcr;
> +	default:			/* Ignore the other entries. */
> +		return 0;
> +	}
> +}

I haven't been able to find in the documentation what the numbers above mean, I
must have missed it. Would you mind pointing me in the right direction?

> +
> +static void lock_block(struct cfi_flash_device *sfdev, u64 addr, bool lock)
> +{
> +	int block_nr = addr / FLASH_BLOCK_SIZE;
> +
> +	if (lock)
> +		set_bit(block_nr, sfdev->lock_bm);
> +	else
> +		clear_bit(block_nr, sfdev->lock_bm);
> +}
> +
> +static void word_program(struct cfi_flash_device *sfdev,
> +			 u64 addr, void *data, int len)

I think Intel Application Note 646 calls this writing a word, not programming a word.

> +{
> +	if (block_is_locked(sfdev, addr)) {
> +		sfdev->sr |= 0x12;
> +		return;
> +	}
> +
> +	memcpy(sfdev->flash_memory + addr, data, len);
> +}
> +
> +/* Reset the program buffer state to prepare for follow-up writes. */
> +static void buffer_setup(struct cfi_flash_device *sfdev)
> +{
> +	memset(sfdev->program_buffer, 0, sizeof(sfdev->program_buffer));
> +	sfdev->last_address = ~0ULL;
> +	sfdev->buff_written = 0;
> +}
> +
> +static bool buffer_program(struct cfi_flash_device *sfdev,
> +			   u64 addr, void *buffer, int len)

Isn't buffer_write a better name for a function that writes to a buffer? Intel
Application Note 646 calls this process "write to buffer" in flowchart C1.

> +{
> +	unsigned int buf_addr;
> +
> +	if (sfdev->buff_written >= sfdev->program_length)

Why is this called program_length when it is in fact the buffer length?

> +		return false;
> +
> +	/*
> +	 * The first word written into the buffer after the setup command
> +	 * happens to be the base address for the buffer.
> +	 * All subsequent writes need to be within this address and this
> +	 * address plus the buffer size, so keep this value around.
> +	 */
> +	if (sfdev->last_address == ~0ULL)
> +		sfdev->last_address = addr;

Why is this called last_address when in fact is the buffer base address?

> +
> +	if (addr < sfdev->last_address)
> +		return false;
> +	buf_addr = addr - sfdev->last_address;

So far, in this function we have been using buff as a shorthand for buffer. Maybe
buff_addr would be more consistent.

> +	if (buf_addr >= PROGRAM_BUFF_SIZE)
> +		return false;
> +
> +	memcpy(sfdev->program_buffer + buf_addr, buffer, len);

What if buf_addr + len > sfdev->program_length?

> +	sfdev->buff_written += len;
> +
> +	return true;
> +}
> +
> +static void buffer_confirm(struct cfi_flash_device *sfdev)
> +{
> +	if (block_is_locked(sfdev, sfdev->last_address)) {
> +		sfdev->sr |= 0x12;
> +		return;
> +	}
> +	memcpy(sfdev->flash_memory + sfdev->last_address,
> +	       sfdev->program_buffer, sfdev->buff_written);
> +}
> +
> +static void block_erase_confirm(struct cfi_flash_device *sfdev, u64 addr)

Before this function we've used addr for an offset in the flash file. After this
function, we use faddr. It would be nice if we could settle on one name for it.

> +{
> +	if (block_is_locked(sfdev, addr)) {
> +		sfdev->sr |= 0x12;
> +		return;
> +	}
> +
> +	memset(sfdev->flash_memory + addr, 0xFF, FLASH_BLOCK_SIZE);

Why all 1's and not 0's, is this in the spec and I missed it? Why 0xFF and not
0xff, which looks more widely used? What if addr is not aligned to a block,
wouldn't we keep the start of the block?

Why do we erase the block when the guest wants to confirm that the block was
erased?Is it because it's more convenient not to keep track of the last deleted block?

> +}
> +
> +static void cfi_flash_read(struct cfi_flash_device *sfdev,
> +			   u64 faddr, u8 *data, u32 len)
> +{
> +	u16 cfi_value = 0;
> +
> +	switch (sfdev->read_mode) {
> +	case READ_ARRAY:
> +		/* just copy the requested bytes from the array */
> +		memcpy(data, sfdev->flash_memory + faddr, len);
Shouldn't we check that faddr + len <= sfdev->size?
> +		return;
> +	case READ_STATUS:
> +		cfi_value = sfdev->sr;
> +		break;
> +	case READ_DEVICE_ID:
> +		cfi_value = read_dev_id(sfdev, faddr);
> +		break;
> +	case READ_QUERY:
> +		cfi_value = read_cfi(sfdev, faddr / CFI_BUS_WIDTH);
> +		break;
> +	}
> +	switch (len) {
> +	case 1:
> +		*data = cfi_value;
> +		break;
> +	case 8: memset(data + 4, 0, 4);
> +		/* fall-through */
> +	case 4:
> +		if (CFI_NR_FLASH_CHIPS == 2)
> +			memcpy(data + 2, &cfi_value, 2);
> +		else
> +			memset(data + 2, 0, 2);
> +		/* fall-through */
> +	case 2:
> +		memcpy(data, &cfi_value, 2);
> +		break;
> +	default:
> +		pr_debug("CFI flash: illegal access length %d for read mode %d",
> +			 len, sfdev->read_mode);
> +		break;
> +	}
> +}
> +
> +/*
> + * Any writes happening in "READY" state don't actually write to the memory,
> + * but are really treated as commands to advance the state machine and select
> + * the next action.
> + * Change the state and modes according to the value written. The address
> + * that value is written to does not matter and is ignored.
> + */
> +static void cfi_flash_write_ready(struct cfi_flash_device *sfdev, u8 command)
> +{
> +	switch (command) {
> +	case CFI_CMD_READ_JEDEC:
> +		sfdev->read_mode = READ_DEVICE_ID;

So, the command CFI_CMD_READ_JEDEC puts the device in the READ_DEVICE_ID state.
Why not READ_JEDEC? Better yet, why not CFI_CMD_READ_JEDEC_ID -> READ_JEDEC_ID, to
match the name in the flow chart at page 14 from Intel Application Note 646?

Having the command match the state would make the transitions between the states a
lot easier to follow, and there are a *lot* of transitions. Same for
CFI_CMD_READ_STATUS_REGISTER -> READ_STATUS and CFI_CMD_READ_CFI_QUERY ->
READ_QUERY below (arguably, these are slightly better). This is already the case
for CFI_CMD_READ_ARRAY -> READ_ARRAY.

> +		break;
> +	case CFI_CMD_READ_STATUS_REGISTER:
> +		sfdev->read_mode = READ_STATUS;
> +		break;
> +	case CFI_CMD_READ_CFI_QUERY:
> +		sfdev->read_mode = READ_QUERY;
> +		break;
> +	case CFI_CMD_CLEAR_STATUS_REGISTER:
> +		sfdev->sr = 0x80;
> +		break;
> +	case CFI_CMD_WORD_PROGRAM_SETUP:
> +	case CFI_CMD_ALTERNATE_WORD_PROGRAM_SETUP:
> +		sfdev->state = WP_SETUP;
> +		sfdev->read_mode = READ_STATUS;
> +		break;
> +	case CFI_CMD_LOCK_BLOCK_SETUP:
> +		sfdev->state = LOCK_SETUP;
> +		break;
> +	case CFI_CMD_BLOCK_ERASE_SETUP:
> +		sfdev->state = ERASE_SETUP;
> +		sfdev->read_mode = READ_STATUS;

The "Block Erase Flowchart" from Intel Application Note 646, page 16 calls this
command Single Block Erase Command and it receives the address for the block to be
erased, which seems to be ignored here.

> +		break;
> +	case CFI_CMD_BUFFERED_PROGRAM_SETUP:
> +		buffer_setup(sfdev);
> +		sfdev->state = BP_SETUP;
> +		sfdev->read_mode = READ_STATUS;
> +		break;
> +	case CFI_CMD_BUFFERED_PROGRAM_CONFIRM:
> +		pr_debug("CFI flash: unexpected confirm command 0xD0");
> +		break;
> +	default:
> +		pr_debug("CFI flash: unknown command 0x%x", command);

Here, the unknown command is printed with small caps; above, for
CFI_CMD_BUFFERED_PROGRAM_CONFIRM, it is printed with capital letters (0xD0).

> +		/* fall-through */
> +	case CFI_CMD_READ_ARRAY:
> +		sfdev->read_mode = READ_ARRAY;
> +		break;
> +	}
> +}
> +
> +static void cfi_flash_write(struct cfi_flash_device *sfdev, u16 command,
> +			    u64 faddr, u8 *data, u32 len)
> +{
> +	switch (sfdev->state) {
> +	case READY:
> +		cfi_flash_write_ready(sfdev, command & 0xff);

The implicit cast does the same thing as the mask. I have seen that in several
places. Is it to emphasise the fact that the value will be truncated?

> +		return;
> +	case LOCK_SETUP:
> +		switch (command & 0xff) {
> +		case CFI_CMD_LOCK_BLOCK:
> +			lock_block(sfdev, faddr, true);
> +			sfdev->read_mode = READ_STATUS;
> +			break;
> +		case CFI_CMD_UNLOCK_BLOCK:
> +			lock_block(sfdev, faddr, false);
> +			sfdev->read_mode = READ_STATUS;
> +			break;
> +		default:
> +			sfdev->sr |= 0x30;
> +			break;
> +		}
> +		sfdev->state = READY;
> +		break;
> +
> +	case WP_SETUP:
> +		word_program(sfdev, faddr, data, len);
> +		sfdev->read_mode = READ_STATUS;
> +		sfdev->state = READY;
> +		break;
> +
> +	case BP_LOAD:

What does the "BP" in BP_LOAD stand for? Wouldn't BUFFER_WRITE be a better name?
And instead of BP_SETUP, BUFFER_WRITE_SETUP?

> +		if (buffer_program(sfdev, faddr, data, len))
> +			break;
> +
> +		if ((command & 0xFF) == CFI_CMD_BUFFERED_PROGRAM_CONFIRM) {

So far, the vast majority of hex numbers are with small caps (0xff, not 0xFF),
including in this function. We use BP_SETUP for setting up a buffer write, BP_LOAD
for doing the actual write and CFI_CMD_BUFFERED_PROGRAM_CONFIRM to confirm the
write? Does that mean that "BP" means buffered program? Why not use buffer write
everywhere, like it is called in the spec, and don't abbreviate it some of the time.

> +			buffer_confirm(sfdev);
> +			sfdev->read_mode = READ_STATUS;
> +		} else {
> +			pr_debug("CFI flash: BP_LOAD: expected CONFIRM(0xd0), got 0x%x @ 0x%llx",
> +				 command, faddr);
> +			sfdev->sr |= 0x10;
> +		}
> +		sfdev->state = READY;
> +		break;
> +
> +	case BP_SETUP:
> +		sfdev->program_length = (command + 1) * CFI_BUS_WIDTH;
> +		if (sfdev->program_length > PROGRAM_BUFF_SIZE)
> +			sfdev->program_length = PROGRAM_BUFF_SIZE;
> +		sfdev->state = BP_LOAD;
> +		sfdev->read_mode = READ_STATUS;
> +		break;
> +
> +	case ERASE_SETUP:
> +		if ((command & 0xff) == CFI_CMD_BLOCK_ERASE_CONFIRM)
> +			block_erase_confirm(sfdev, faddr);
> +		else
> +			sfdev->sr |= 0x30;
> +
> +		sfdev->state = READY;
> +		sfdev->read_mode = READ_STATUS;
> +		break;
> +	}

I don't think it's outside the realm of possibility for someone to modify the
state machine and forget to handle a state. How about an error message or an
assert as the default case statement? Same for cfi_flash_read.

> +}
> +
> +static void cfi_flash_mmio(struct kvm_cpu *vcpu,
> +			   u64 addr, u8 *data, u32 len, u8 is_write,
> +			   void *context)
> +{
> +	struct cfi_flash_device *sfdev = context;
> +	u64 faddr = addr - sfdev->base_addr;
> +	u32 value;
> +
> +	if (!is_write) {
> +		mutex_lock(&sfdev->mutex);
> +
> +		cfi_flash_read(sfdev, faddr, data, len);
> +
> +		mutex_unlock(&sfdev->mutex);
> +
> +		return;
> +	}
> +
> +	if (len > 4) {
> +		pr_info("CFI flash: MMIO %d-bit write access not supported",
> +			 len * 8);
> +		return;
> +	}
> +
> +	memcpy(&value, data, len);
> +
> +	mutex_lock(&sfdev->mutex);
> +
> +	cfi_flash_write(sfdev, value & 0xffff, faddr, data, len);

I'm not sure what to make of this. Would you mind explaining why using the mask
when cfi_flash_write already converts the value to u16?

> +
> +	mutex_unlock(&sfdev->mutex);
> +}
> +
> +#ifdef CONFIG_HAS_LIBFDT
> +static void generate_cfi_flash_fdt_node(void *fdt,
> +					struct device_header *dev_hdr,
> +					void (*generate_irq_prop)(void *fdt,
> +								  u8 irq,
> +								enum irq_type))
> +{
> +	struct cfi_flash_device *sfdev;
> +	u64 reg_prop[2];
> +
> +	sfdev = container_of(dev_hdr, struct cfi_flash_device, dev_hdr);
> +	reg_prop[0] = cpu_to_fdt64(sfdev->base_addr);
> +	reg_prop[1] = cpu_to_fdt64(sfdev->size);
> +
> +	_FDT(fdt_begin_node(fdt, "flash"));
> +	_FDT(fdt_property_cell(fdt, "bank-width", CFI_BUS_WIDTH));
> +	_FDT(fdt_property_cell(fdt, "#address-cells", 0x1));
> +	_FDT(fdt_property_cell(fdt, "#size-cells", 0x1));
> +	_FDT(fdt_property_string(fdt, "compatible", "cfi-flash"));
> +	_FDT(fdt_property_string(fdt, "label", "System-firmware"));
> +	_FDT(fdt_property(fdt, "reg", &reg_prop, sizeof(reg_prop)));
> +	_FDT(fdt_end_node(fdt));
> +}
> +#else
> +#define generate_cfi_flash_fdt_node NULL
> +#endif
> +
> +static struct cfi_flash_device *create_flash_device_file(struct kvm *kvm,
> +							 const char *filename)
> +{
> +	struct cfi_flash_device *sfdev;
> +	struct stat statbuf;
> +	unsigned int value;
> +	int ret;
> +	int fd;
> +
> +	fd = open(filename, O_RDWR);
> +	if (fd < 0)
> +		return ERR_PTR(-errno);
> +	if (fstat(fd, &statbuf) < 0) {
> +		close(fd);
> +		return ERR_PTR(-errno);

The function does cleanup in three separate places: here, when the malloc below
fails, and at the end.

> +	}
> +
> +	sfdev = malloc(sizeof(struct cfi_flash_device));
> +	if (!sfdev) {
> +		close(fd);
> +		return ERR_PTR(-ENOMEM);
> +	}
> +
> +	sfdev->size = statbuf.st_size;
> +	/* Round down to nearest power-of-2 size value. */
> +	sfdev->size = 1U << (pow2_size(sfdev->size + 1) - 1);
> +	if (sfdev->size > KVM_FLASH_MAX_SIZE)
> +		sfdev->size = KVM_FLASH_MAX_SIZE;
> +	if (sfdev->size < statbuf.st_size)
> +		pr_info("Trimmed flash size down to %d bytes\n", sfdev->size);

First time I got this message, I checked the size of the flash file, to make sure
kvmtool didn't truncate it. I guess I'm being paranoid, but how about rewording
the message to something along the lines of: "Flash size not power of two; using
the first xxxx bytes". Also, struct cfi_flash_device->size is an u32, and the
format string uses %d.

> +	sfdev->flash_memory = mmap(NULL, sfdev->size,
> +				   PROT_READ | PROT_WRITE, MAP_SHARED,
> +				   fd, 0);
> +	if (sfdev->flash_memory == MAP_FAILED) {
> +		ret = -errno;
> +		goto out_err;
> +	}
> +	sfdev->base_addr = KVM_FLASH_MMIO_BASE;
> +	sfdev->state = READY;
> +	sfdev->read_mode = READ_ARRAY;
> +	sfdev->sr = 0x80;
> +	sfdev->rcr = 0xbfcf;
> +
> +	value = roundup(nr_erase_blocks(sfdev), BITS_PER_LONG) / 8;
> +	sfdev->lock_bm = malloc(value);
> +	memset(sfdev->lock_bm, 0, value);
> +
> +	sfdev->dev_hdr.bus_type = DEVICE_BUS_MMIO;
> +	sfdev->dev_hdr.data = generate_cfi_flash_fdt_node;
> +	mutex_init(&sfdev->mutex);
> +	ret = device__register(&sfdev->dev_hdr);
> +	if (ret)
> +		goto out_unmap;
> +
> +	ret = kvm__register_mmio(kvm,
> +				 sfdev->base_addr, sfdev->size,
> +				 false, cfi_flash_mmio, sfdev);
> +	if (ret) {
> +		device__unregister(&sfdev->dev_hdr);
> +		goto out_unmap;
> +	}
> +
> +	return sfdev;
> +
> +out_unmap:
> +	munmap(sfdev->flash_memory, sfdev->size);
> +
> +out_err:
> +	close(fd);
> +	free(sfdev);
> +
> +	return ERR_PTR(ret);

I was under the impression the pattern is to release resources in the reverse
order they are allocated. In that case, close(fd) should be last.

> +}
> +
> +static int flash__init(struct kvm *kvm)
> +{
> +	struct cfi_flash_device *sfdev;
> +
> +	if (!kvm->cfg.flash_filename)
> +		return 0;
> +
> +	sfdev = create_flash_device_file(kvm, kvm->cfg.flash_filename);
> +	if (IS_ERR(sfdev))
> +		return PTR_ERR(sfdev);
> +
> +	return 0;
> +}
> +dev_init(flash__init);

Nitpicking, but I think a better name would be cfi_flash__init: it's consistent
with the file name and it would be easier to make the connection with this file if
someone prints the init lists.

Overall, I feel there's a general inconsistency regarding function names: this one
is prefixed with flash__, other are prefixed with cfi_flash_, others have no such
prefix. For example, one function is named cfi_flash_read, another read_cfi, when
a better name would be cfi_flash_read_query; in some places you put the action
first (lock_block), in others the object first (word_program instead of
program_word). Is there a pattern I am not seeing?

> diff --git a/include/kvm/kvm-config.h b/include/kvm/kvm-config.h
> index a052b0bc..f4a8b831 100644
> --- a/include/kvm/kvm-config.h
> +++ b/include/kvm/kvm-config.h
> @@ -35,6 +35,7 @@ struct kvm_config {
>  	const char *vmlinux_filename;
>  	const char *initrd_filename;
>  	const char *firmware_filename;
> +	const char *flash_filename;
>  	const char *console;
>  	const char *dev;
>  	const char *network;
> diff --git a/include/kvm/util.h b/include/kvm/util.h
> index 4ca7aa93..021369b4 100644
> --- a/include/kvm/util.h
> +++ b/include/kvm/util.h
> @@ -104,6 +104,14 @@ static inline unsigned long roundup_pow_of_two(unsigned long x)
>  	return x ? 1UL << fls_long(x - 1) : 0;
>  }
>  
> +static inline int pow2_size(unsigned long x)
> +{
> +	if (x <= 1)
> +		return x;

If I understand the function correctly, it should return 0 here because 2^0 < 2^1
&& 2^0 >= 1 && 2^0 >= 0.

Thanks,
Alex
> +
> +	return sizeof(x) * 8 - __builtin_clzl(x - 1);
> +}
> +
>  struct kvm;
>  void *mmap_hugetlbfs(struct kvm *kvm, const char *htlbfs_path, u64 size);
>  void *mmap_anon_or_hugetlbfs(struct kvm *kvm, const char *hugetlbfs_path, u64 size);



[Index of Archives]     [KVM ARM]     [KVM ia64]     [KVM ppc]     [Virtualization Tools]     [Spice Development]     [Libvirt]     [Libvirt Users]     [Linux USB Devel]     [Linux Audio Users]     [Yosemite Questions]     [Linux Kernel]     [Linux SCSI]     [XFree86]

  Powered by Linux