Add a helper to determine whether or not a full TLB flush needs to be performed on nested VM-Enter/VM-Exit, as the logic is identical for both flows and needs a fairly beefy comment to boot. This also provides a common point to make future adjustments to the logic. Handle vpid12 changes the new helper as well even though it is specific to VM-Enter. The vpid12 logic is an extension of the flushing logic, and it's worth the extra bool parameter to provide a single location for the flushing logic. Cc: Liran Alon <liran.alon@xxxxxxxxxx> Signed-off-by: Sean Christopherson <sean.j.christopherson@xxxxxxxxx> --- arch/x86/kvm/vmx/nested.c | 88 +++++++++++++++++++-------------------- 1 file changed, 44 insertions(+), 44 deletions(-) diff --git a/arch/x86/kvm/vmx/nested.c b/arch/x86/kvm/vmx/nested.c index 77819d890088..580d5c98352f 100644 --- a/arch/x86/kvm/vmx/nested.c +++ b/arch/x86/kvm/vmx/nested.c @@ -1154,6 +1154,48 @@ static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu) (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02); } +static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12, + bool is_vmenter) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + /* + * If VPID is disabled, linear and combined mappings are flushed on + * VM-Enter/VM-Exit, and guest-physical mappings are valid only for + * their associated EPTP. + */ + if (!enable_vpid) + return; + + /* + * If vmcs12 doesn't use VPID, L1 expects linear and combined mappings + * for *all* contexts to be flushed on VM-Enter/VM-Exit. + * + * If VPID is enabled and used by vmc12, but L2 does not have a unique + * TLB tag (ASID), i.e. EPT is disabled and KVM was unable to allocate + * a VPID for L2, flush the TLB as the effective ASID is common to both + * L1 and L2. + * + * Defer the flush so that it runs after vmcs02.EPTP has been set by + * KVM_REQ_LOAD_MMU_PGD (if nested EPT is enabled) and to avoid + * redundant flushes further down the nested pipeline. + * + * If a TLB flush isn't required due to any of the above, and vpid12 is + * changing then the new "virtual" VPID (vpid12) will reuse the same + * "real" VPID (vpid02), and so needs to be sync'd. There is no direct + * mapping between vpid02 and vpid12, vpid02 is per-vCPU and reused for + * all nested vCPUs. + */ + if (!nested_cpu_has_vpid(vmcs12) || !nested_has_guest_tlb_tag(vcpu)) { + kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); + } else if (is_vmenter && + vmcs12->virtual_processor_id != vmx->nested.last_vpid) { + vmx->nested.last_vpid = vmcs12->virtual_processor_id; + vpid_sync_context(nested_get_vpid02(vcpu)); + } +} + static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask) { superset &= mask; @@ -2462,32 +2504,7 @@ static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12, if (kvm_has_tsc_control) decache_tsc_multiplier(vmx); - if (enable_vpid) { - /* - * There is no direct mapping between vpid02 and vpid12, the - * vpid02 is per-vCPU for L0 and reused while the value of - * vpid12 is changed w/ one invvpid during nested vmentry. - * The vpid12 is allocated by L1 for L2, so it will not - * influence global bitmap(for vpid01 and vpid02 allocation) - * even if spawn a lot of nested vCPUs. - */ - if (nested_cpu_has_vpid(vmcs12) && nested_has_guest_tlb_tag(vcpu)) { - if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) { - vmx->nested.last_vpid = vmcs12->virtual_processor_id; - vpid_sync_context(nested_get_vpid02(vcpu)); - } - } else { - /* - * If L1 use EPT, then L0 needs to execute INVEPT on - * EPTP02 instead of EPTP01. Therefore, delay TLB - * flush until vmcs02->eptp is fully updated by - * KVM_REQ_LOAD_MMU_PGD. Note that this assumes - * KVM_REQ_TLB_FLUSH is evaluated after - * KVM_REQ_LOAD_MMU_PGD in vcpu_enter_guest(). - */ - kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); - } - } + nested_vmx_transition_tlb_flush(vcpu, vmcs12, true); if (nested_cpu_has_ept(vmcs12)) nested_ept_init_mmu_context(vcpu); @@ -4054,24 +4071,7 @@ static void load_vmcs12_host_state(struct kvm_vcpu *vcpu, if (!enable_ept) vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault; - /* - * If vmcs01 doesn't use VPID, CPU flushes TLB on every - * VMEntry/VMExit. Thus, no need to flush TLB. - * - * If vmcs12 doesn't use VPID, L1 expects TLB to be - * flushed on every VMEntry/VMExit. - * - * Otherwise, we can preserve TLB entries as long as we are - * able to tag L1 TLB entries differently than L2 TLB entries. - * - * If vmcs12 uses EPT, we need to execute this flush on EPTP01 - * and therefore we request the TLB flush to happen only after VMCS EPTP - * has been set by KVM_REQ_LOAD_MMU_PGD. - */ - if (enable_vpid && - (!nested_cpu_has_vpid(vmcs12) || !nested_has_guest_tlb_tag(vcpu))) { - kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); - } + nested_vmx_transition_tlb_flush(vcpu, vmcs12, false); vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs); vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp); -- 2.24.1