Add the WRITE_ONCE and READ_ONCE macros which are used to prevent to prevent the compiler from optimizing a store or a load, respectively, into something else. Cc: Drew Jones <drjones@xxxxxxxxxx> Cc: Laurent Vivier <lvivier@xxxxxxxxxx> Cc: Thomas Huth <thuth@xxxxxxxxxx> Cc: David Hildenbrand <david@xxxxxxxxxx> Cc: Paolo Bonzini <pbonzini@xxxxxxxxxx> Cc: Radim Krčmář <rkrcmar@xxxxxxxxxx> Signed-off-by: Alexandru Elisei <alexandru.elisei@xxxxxxx> --- lib/linux/compiler.h | 81 ++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 81 insertions(+) create mode 100644 lib/linux/compiler.h diff --git a/lib/linux/compiler.h b/lib/linux/compiler.h new file mode 100644 index 000000000000..aac84c1d711c --- /dev/null +++ b/lib/linux/compiler.h @@ -0,0 +1,81 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* Taken from tools/include/linux/compiler.h, with minor changes. */ +#ifndef __LINUX_COMPILER_H +#define __LINUX_COMPILER_H + +#ifndef __ASSEMBLY__ + +#include <stdint.h> + +#define barrier() asm volatile("" : : : "memory") + +#define __always_inline inline __attribute__((always_inline)) + +static __always_inline void __read_once_size(const volatile void *p, void *res, int size) +{ + switch (size) { + case 1: *(uint8_t *)res = *(volatile uint8_t *)p; break; + case 2: *(uint16_t *)res = *(volatile uint16_t *)p; break; + case 4: *(uint32_t *)res = *(volatile uint32_t *)p; break; + case 8: *(uint64_t *)res = *(volatile uint64_t *)p; break; + default: + barrier(); + __builtin_memcpy((void *)res, (const void *)p, size); + barrier(); + } +} + +/* + * Prevent the compiler from merging or refetching reads or writes. The + * compiler is also forbidden from reordering successive instances of + * READ_ONCE and WRITE_ONCE, but only when the compiler is aware of some + * particular ordering. One way to make the compiler aware of ordering is to + * put the two invocations of READ_ONCE or WRITE_ONCE in different C + * statements. + * + * These two macros will also work on aggregate data types like structs or + * unions. If the size of the accessed data type exceeds the word size of + * the machine (e.g., 32 bits or 64 bits) READ_ONCE() and WRITE_ONCE() will + * fall back to memcpy(). There's at least two memcpy()s: one for the + * __builtin_memcpy() and then one for the macro doing the copy of variable + * - '__u' allocated on the stack. + * + * Their two major use cases are: (1) Mediating communication between + * process-level code and irq/NMI handlers, all running on the same CPU, + * and (2) Ensuring that the compiler does not fold, spindle, or otherwise + * mutilate accesses that either do not require ordering or that interact + * with an explicit memory barrier or atomic instruction that provides the + * required ordering. + */ +#define READ_ONCE(x) \ +({ \ + union { typeof(x) __val; char __c[1]; } __u = \ + { .__c = { 0 } }; \ + __read_once_size(&(x), __u.__c, sizeof(x)); \ + __u.__val; \ +}) + +static __always_inline void __write_once_size(volatile void *p, void *res, int size) +{ + switch (size) { + case 1: *(volatile uint8_t *)p = *(uint8_t *)res; break; + case 2: *(volatile uint16_t *)p = *(uint16_t *)res; break; + case 4: *(volatile uint32_t *)p = *(uint32_t *)res; break; + case 8: *(volatile uint64_t *)p = *(uint64_t *)res; break; + default: + barrier(); + __builtin_memcpy((void *)p, (const void *)res, size); + barrier(); + } +} + +#define WRITE_ONCE(x, val) \ +({ \ + union { typeof(x) __val; char __c[1]; } __u = \ + { .__val = (typeof(x)) (val) }; \ + __write_once_size(&(x), __u.__c, sizeof(x)); \ + __u.__val; \ +}) + +#endif /* !__ASSEMBLY__ */ +#endif /* !__LINUX_COMPILER_H */ -- 2.20.1