Re: kernel BUG at arch/x86/kvm/x86.c:361! on AMD CPU

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



The guest crash can be reproduced with only the Syzkaller reproducer C program (see attached) run from the guest. Syzkaller is not running.

George

On 6/18/2019 2:27 PM, Borislav Petkov wrote:
On Tue, Jun 18, 2019 at 08:01:06PM +0200, Dmitry Vyukov wrote:
I am not a KVM folk either, but FWIW syzkaller is capable of creating
a double-nested VM.
Aaaha, there it is. :)

The code is somewhat VMX-specific, but it should
be capable at least executing some SVM instructions inside of guest.
This code setups VM to run a given instruction sequences (should be generic):
https://github.com/google/syzkaller/blob/34bf9440bd06034f86b5d9ac8afbf078129cbdae/executor/common_kvm_amd64.h
The instruction generator is based on Intel XED so it may be somewhat
Intel-biased, but at least I see some mentions of SVM there:
https://raw.githubusercontent.com/google/syzkaller/34bf9440bd06034f86b5d9ac8afbf078129cbdae/pkg/ifuzz/gen/all-enc-instructions.txt
Right, and that right there looks wrong:

ICLASS    : VMLOAD
CPL       : 3
CATEGORY  : SYSTEM
EXTENSION : SVM
ATTRIBUTES: PROTECTED_MODE
PATTERN   : 0x0F 0x01 MOD[0b11] MOD=3 REG[0b011] RM[0b010]
OPERANDS  : REG0=OrAX():r:IMPL

That is, *if* "CPL: 3" above means in XED context that VMLOAD is
supposed to be run in CPL3, then this is wrong because VMLOAD #GPs if
CPL was not 0. Ditto for VMRUN and a couple of others.

Perhaps that support was added at some point but not really run on AMD
hw yet...


// autogenerated by syzkaller (https://github.com/google/syzkaller)

#define _GNU_SOURCE 

#include <dirent.h>
#include <endian.h>
#include <errno.h>
#include <fcntl.h>
#include <setjmp.h>
#include <signal.h>
#include <stdarg.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/prctl.h>
#include <sys/stat.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <time.h>
#include <unistd.h>

#include <linux/kvm.h>

unsigned long long procid;

static __thread int skip_segv;
static __thread jmp_buf segv_env;

static void segv_handler(int sig, siginfo_t* info, void* ctx)
{
	uintptr_t addr = (uintptr_t)info->si_addr;
	const uintptr_t prog_start = 1 << 20;
	const uintptr_t prog_end = 100 << 20;
	if (__atomic_load_n(&skip_segv, __ATOMIC_RELAXED) && (addr < prog_start || addr > prog_end)) {
		_longjmp(segv_env, 1);
	}
	exit(sig);
}

static void install_segv_handler(void)
{
	struct sigaction sa;
	memset(&sa, 0, sizeof(sa));
	sa.sa_handler = SIG_IGN;
	syscall(SYS_rt_sigaction, 0x20, &sa, NULL, 8);
	syscall(SYS_rt_sigaction, 0x21, &sa, NULL, 8);
	memset(&sa, 0, sizeof(sa));
	sa.sa_sigaction = segv_handler;
	sa.sa_flags = SA_NODEFER | SA_SIGINFO;
	sigaction(SIGSEGV, &sa, NULL);
	sigaction(SIGBUS, &sa, NULL);
}

#define NONFAILING(...) { __atomic_fetch_add(&skip_segv, 1, __ATOMIC_SEQ_CST); if (_setjmp(segv_env) == 0) { __VA_ARGS__; } __atomic_fetch_sub(&skip_segv, 1, __ATOMIC_SEQ_CST); }

static void sleep_ms(uint64_t ms)
{
	usleep(ms * 1000);
}

static uint64_t current_time_ms(void)
{
	struct timespec ts;
	if (clock_gettime(CLOCK_MONOTONIC, &ts))
	exit(1);
	return (uint64_t)ts.tv_sec * 1000 + (uint64_t)ts.tv_nsec / 1000000;
}

static bool write_file(const char* file, const char* what, ...)
{
	char buf[1024];
	va_list args;
	va_start(args, what);
	vsnprintf(buf, sizeof(buf), what, args);
	va_end(args);
	buf[sizeof(buf) - 1] = 0;
	int len = strlen(buf);
	int fd = open(file, O_WRONLY | O_CLOEXEC);
	if (fd == -1)
		return false;
	if (write(fd, buf, len) != len) {
		int err = errno;
		close(fd);
		errno = err;
		return false;
	}
	close(fd);
	return true;
}

const char kvm_asm16_cpl3[] = "\x0f\x20\xc0\x66\x83\xc8\x01\x0f\x22\xc0\xb8\xa0\x00\x0f\x00\xd8\xb8\x2b\x00\x8e\xd8\x8e\xc0\x8e\xe0\x8e\xe8\xbc\x00\x01\xc7\x06\x00\x01\x1d\xba\xc7\x06\x02\x01\x23\x00\xc7\x06\x04\x01\x00\x01\xc7\x06\x06\x01\x2b\x00\xcb";
const char kvm_asm32_paged[] = "\x0f\x20\xc0\x0d\x00\x00\x00\x80\x0f\x22\xc0";
const char kvm_asm32_vm86[] = "\x66\xb8\xb8\x00\x0f\x00\xd8\xea\x00\x00\x00\x00\xd0\x00";
const char kvm_asm32_paged_vm86[] = "\x0f\x20\xc0\x0d\x00\x00\x00\x80\x0f\x22\xc0\x66\xb8\xb8\x00\x0f\x00\xd8\xea\x00\x00\x00\x00\xd0\x00";
const char kvm_asm64_enable_long[] = "\x0f\x20\xc0\x0d\x00\x00\x00\x80\x0f\x22\xc0\xea\xde\xc0\xad\x0b\x50\x00\x48\xc7\xc0\xd8\x00\x00\x00\x0f\x00\xd8";
const char kvm_asm64_init_vm[] = "\x0f\x20\xc0\x0d\x00\x00\x00\x80\x0f\x22\xc0\xea\xde\xc0\xad\x0b\x50\x00\x48\xc7\xc0\xd8\x00\x00\x00\x0f\x00\xd8\x48\xc7\xc1\x3a\x00\x00\x00\x0f\x32\x48\x83\xc8\x05\x0f\x30\x0f\x20\xe0\x48\x0d\x00\x20\x00\x00\x0f\x22\xe0\x48\xc7\xc1\x80\x04\x00\x00\x0f\x32\x48\xc7\xc2\x00\x60\x00\x00\x89\x02\x48\xc7\xc2\x00\x70\x00\x00\x89\x02\x48\xc7\xc0\x00\x5f\x00\x00\xf3\x0f\xc7\x30\x48\xc7\xc0\x08\x5f\x00\x00\x66\x0f\xc7\x30\x0f\xc7\x30\x48\xc7\xc1\x81\x04\x00\x00\x0f\x32\x48\x83\xc8\x3f\x48\x21\xd0\x48\xc7\xc2\x00\x40\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x02\x40\x00\x00\x48\xb8\x84\x9e\x99\xf3\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x1e\x40\x00\x00\x48\xc7\xc0\x81\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc1\x83\x04\x00\x00\x0f\x32\x48\x0d\xff\x6f\x03\x00\x48\x21\xd0\x48\xc7\xc2\x0c\x40\x00\x00\x0f\x79\xd0\x48\xc7\xc1\x84\x04\x00\x00\x0f\x32\x48\x0d\xff\x17\x00\x00\x48\x21\xd0\x48\xc7\xc2\x12\x40\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x04\x2c\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x00\x28\x00\x00\x48\xc7\xc0\xff\xff\xff\xff\x0f\x79\xd0\x48\xc7\xc2\x02\x0c\x00\x00\x48\xc7\xc0\x50\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc0\x58\x00\x00\x00\x48\xc7\xc2\x00\x0c\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x04\x0c\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x06\x0c\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x08\x0c\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0a\x0c\x00\x00\x0f\x79\xd0\x48\xc7\xc0\xd8\x00\x00\x00\x48\xc7\xc2\x0c\x0c\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x02\x2c\x00\x00\x48\xc7\xc0\x00\x05\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x00\x4c\x00\x00\x48\xc7\xc0\x50\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x10\x6c\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x12\x6c\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x0f\x20\xc0\x48\xc7\xc2\x00\x6c\x00\x00\x48\x89\xc0\x0f\x79\xd0\x0f\x20\xd8\x48\xc7\xc2\x02\x6c\x00\x00\x48\x89\xc0\x0f\x79\xd0\x0f\x20\xe0\x48\xc7\xc2\x04\x6c\x00\x00\x48\x89\xc0\x0f\x79\xd0\x48\xc7\xc2\x06\x6c\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x08\x6c\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0a\x6c\x00\x00\x48\xc7\xc0\x00\x3a\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0c\x6c\x00\x00\x48\xc7\xc0\x00\x10\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0e\x6c\x00\x00\x48\xc7\xc0\x00\x38\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x14\x6c\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x16\x6c\x00\x00\x48\x8b\x04\x25\x10\x5f\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x00\x00\x00\x00\x48\xc7\xc0\x01\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x02\x00\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x00\x20\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x02\x20\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x04\x20\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x06\x20\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc1\x77\x02\x00\x00\x0f\x32\x48\xc1\xe2\x20\x48\x09\xd0\x48\xc7\xc2\x00\x2c\x00\x00\x48\x89\xc0\x0f\x79\xd0\x48\xc7\xc2\x04\x40\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0a\x40\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0e\x40\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x10\x40\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x16\x40\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x14\x40\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x00\x60\x00\x00\x48\xc7\xc0\xff\xff\xff\xff\x0f\x79\xd0\x48\xc7\xc2\x02\x60\x00\x00\x48\xc7\xc0\xff\xff\xff\xff\x0f\x79\xd0\x48\xc7\xc2\x1c\x20\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x1e\x20\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x20\x20\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x22\x20\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x00\x08\x00\x00\x48\xc7\xc0\x58\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x02\x08\x00\x00\x48\xc7\xc0\x50\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x04\x08\x00\x00\x48\xc7\xc0\x58\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x06\x08\x00\x00\x48\xc7\xc0\x58\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x08\x08\x00\x00\x48\xc7\xc0\x58\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0a\x08\x00\x00\x48\xc7\xc0\x58\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0c\x08\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0e\x08\x00\x00\x48\xc7\xc0\xd8\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x12\x68\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x14\x68\x00\x00\x48\xc7\xc0\x00\x3a\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x16\x68\x00\x00\x48\xc7\xc0\x00\x10\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x18\x68\x00\x00\x48\xc7\xc0\x00\x38\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x00\x48\x00\x00\x48\xc7\xc0\xff\xff\x0f\x00\x0f\x79\xd0\x48\xc7\xc2\x02\x48\x00\x00\x48\xc7\xc0\xff\xff\x0f\x00\x0f\x79\xd0\x48\xc7\xc2\x04\x48\x00\x00\x48\xc7\xc0\xff\xff\x0f\x00\x0f\x79\xd0\x48\xc7\xc2\x06\x48\x00\x00\x48\xc7\xc0\xff\xff\x0f\x00\x0f\x79\xd0\x48\xc7\xc2\x08\x48\x00\x00\x48\xc7\xc0\xff\xff\x0f\x00\x0f\x79\xd0\x48\xc7\xc2\x0a\x48\x00\x00\x48\xc7\xc0\xff\xff\x0f\x00\x0f\x79\xd0\x48\xc7\xc2\x0c\x48\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0e\x48\x00\x00\x48\xc7\xc0\xff\x1f\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x10\x48\x00\x00\x48\xc7\xc0\xff\x1f\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x12\x48\x00\x00\x48\xc7\xc0\xff\x1f\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x14\x48\x00\x00\x48\xc7\xc0\x93\x40\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x16\x48\x00\x00\x48\xc7\xc0\x9b\x20\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x18\x48\x00\x00\x48\xc7\xc0\x93\x40\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x1a\x48\x00\x00\x48\xc7\xc0\x93\x40\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x1c\x48\x00\x00\x48\xc7\xc0\x93\x40\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x1e\x48\x00\x00\x48\xc7\xc0\x93\x40\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x20\x48\x00\x00\x48\xc7\xc0\x82\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x22\x48\x00\x00\x48\xc7\xc0\x8b\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x1c\x68\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x1e\x68\x00\x00\x48\xc7\xc0\x00\x91\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x20\x68\x00\x00\x48\xc7\xc0\x02\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x06\x28\x00\x00\x48\xc7\xc0\x00\x05\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0a\x28\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0c\x28\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x0e\x28\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x48\xc7\xc2\x10\x28\x00\x00\x48\xc7\xc0\x00\x00\x00\x00\x0f\x79\xd0\x0f\x20\xc0\x48\xc7\xc2\x00\x68\x00\x00\x48\x89\xc0\x0f\x79\xd0\x0f\x20\xd8\x48\xc7\xc2\x02\x68\x00\x00\x48\x89\xc0\x0f\x79\xd0\x0f\x20\xe0\x48\xc7\xc2\x04\x68\x00\x00\x48\x89\xc0\x0f\x79\xd0\x48\xc7\xc0\x18\x5f\x00\x00\x48\x8b\x10\x48\xc7\xc0\x20\x5f\x00\x00\x48\x8b\x08\x48\x31\xc0\x0f\x78\xd0\x48\x31\xc8\x0f\x79\xd0\x0f\x01\xc2\x48\xc7\xc2\x00\x44\x00\x00\x0f\x78\xd0\xf4";
const char kvm_asm64_vm_exit[] = "\x48\xc7\xc3\x00\x44\x00\x00\x0f\x78\xda\x48\xc7\xc3\x02\x44\x00\x00\x0f\x78\xd9\x48\xc7\xc0\x00\x64\x00\x00\x0f\x78\xc0\x48\xc7\xc3\x1e\x68\x00\x00\x0f\x78\xdb\xf4";
const char kvm_asm64_cpl3[] = "\x0f\x20\xc0\x0d\x00\x00\x00\x80\x0f\x22\xc0\xea\xde\xc0\xad\x0b\x50\x00\x48\xc7\xc0\xd8\x00\x00\x00\x0f\x00\xd8\x48\xc7\xc0\x6b\x00\x00\x00\x8e\xd8\x8e\xc0\x8e\xe0\x8e\xe8\x48\xc7\xc4\x80\x0f\x00\x00\x48\xc7\x04\x24\x1d\xba\x00\x00\x48\xc7\x44\x24\x04\x63\x00\x00\x00\x48\xc7\x44\x24\x08\x80\x0f\x00\x00\x48\xc7\x44\x24\x0c\x6b\x00\x00\x00\xcb";

#define ADDR_TEXT 0x0000
#define ADDR_GDT 0x1000
#define ADDR_LDT 0x1800
#define ADDR_PML4 0x2000
#define ADDR_PDP 0x3000
#define ADDR_PD 0x4000
#define ADDR_STACK0 0x0f80
#define ADDR_VAR_HLT 0x2800
#define ADDR_VAR_SYSRET 0x2808
#define ADDR_VAR_SYSEXIT 0x2810
#define ADDR_VAR_IDT 0x3800
#define ADDR_VAR_TSS64 0x3a00
#define ADDR_VAR_TSS64_CPL3 0x3c00
#define ADDR_VAR_TSS16 0x3d00
#define ADDR_VAR_TSS16_2 0x3e00
#define ADDR_VAR_TSS16_CPL3 0x3f00
#define ADDR_VAR_TSS32 0x4800
#define ADDR_VAR_TSS32_2 0x4a00
#define ADDR_VAR_TSS32_CPL3 0x4c00
#define ADDR_VAR_TSS32_VM86 0x4e00
#define ADDR_VAR_VMXON_PTR 0x5f00
#define ADDR_VAR_VMCS_PTR 0x5f08
#define ADDR_VAR_VMEXIT_PTR 0x5f10
#define ADDR_VAR_VMWRITE_FLD 0x5f18
#define ADDR_VAR_VMWRITE_VAL 0x5f20
#define ADDR_VAR_VMXON 0x6000
#define ADDR_VAR_VMCS 0x7000
#define ADDR_VAR_VMEXIT_CODE 0x9000
#define ADDR_VAR_USER_CODE 0x9100
#define ADDR_VAR_USER_CODE2 0x9120

#define SEL_LDT (1 << 3)
#define SEL_CS16 (2 << 3)
#define SEL_DS16 (3 << 3)
#define SEL_CS16_CPL3 ((4 << 3) + 3)
#define SEL_DS16_CPL3 ((5 << 3) + 3)
#define SEL_CS32 (6 << 3)
#define SEL_DS32 (7 << 3)
#define SEL_CS32_CPL3 ((8 << 3) + 3)
#define SEL_DS32_CPL3 ((9 << 3) + 3)
#define SEL_CS64 (10 << 3)
#define SEL_DS64 (11 << 3)
#define SEL_CS64_CPL3 ((12 << 3) + 3)
#define SEL_DS64_CPL3 ((13 << 3) + 3)
#define SEL_CGATE16 (14 << 3)
#define SEL_TGATE16 (15 << 3)
#define SEL_CGATE32 (16 << 3)
#define SEL_TGATE32 (17 << 3)
#define SEL_CGATE64 (18 << 3)
#define SEL_CGATE64_HI (19 << 3)
#define SEL_TSS16 (20 << 3)
#define SEL_TSS16_2 (21 << 3)
#define SEL_TSS16_CPL3 ((22 << 3) + 3)
#define SEL_TSS32 (23 << 3)
#define SEL_TSS32_2 (24 << 3)
#define SEL_TSS32_CPL3 ((25 << 3) + 3)
#define SEL_TSS32_VM86 (26 << 3)
#define SEL_TSS64 (27 << 3)
#define SEL_TSS64_HI (28 << 3)
#define SEL_TSS64_CPL3 ((29 << 3) + 3)
#define SEL_TSS64_CPL3_HI (30 << 3)

#define MSR_IA32_FEATURE_CONTROL 0x3a
#define MSR_IA32_VMX_BASIC 0x480
#define MSR_IA32_SMBASE 0x9e
#define MSR_IA32_SYSENTER_CS 0x174
#define MSR_IA32_SYSENTER_ESP 0x175
#define MSR_IA32_SYSENTER_EIP 0x176
#define MSR_IA32_STAR 0xC0000081
#define MSR_IA32_LSTAR 0xC0000082
#define MSR_IA32_VMX_PROCBASED_CTLS2 0x48B

#define NEXT_INSN $0xbadc0de
#define PREFIX_SIZE 0xba1d

#define KVM_SMI _IO(KVMIO, 0xb7)

#define CR0_PE 1
#define CR0_MP (1 << 1)
#define CR0_EM (1 << 2)
#define CR0_TS (1 << 3)
#define CR0_ET (1 << 4)
#define CR0_NE (1 << 5)
#define CR0_WP (1 << 16)
#define CR0_AM (1 << 18)
#define CR0_NW (1 << 29)
#define CR0_CD (1 << 30)
#define CR0_PG (1 << 31)

#define CR4_VME 1
#define CR4_PVI (1 << 1)
#define CR4_TSD (1 << 2)
#define CR4_DE (1 << 3)
#define CR4_PSE (1 << 4)
#define CR4_PAE (1 << 5)
#define CR4_MCE (1 << 6)
#define CR4_PGE (1 << 7)
#define CR4_PCE (1 << 8)
#define CR4_OSFXSR (1 << 8)
#define CR4_OSXMMEXCPT (1 << 10)
#define CR4_UMIP (1 << 11)
#define CR4_VMXE (1 << 13)
#define CR4_SMXE (1 << 14)
#define CR4_FSGSBASE (1 << 16)
#define CR4_PCIDE (1 << 17)
#define CR4_OSXSAVE (1 << 18)
#define CR4_SMEP (1 << 20)
#define CR4_SMAP (1 << 21)
#define CR4_PKE (1 << 22)

#define EFER_SCE 1
#define EFER_LME (1 << 8)
#define EFER_LMA (1 << 10)
#define EFER_NXE (1 << 11)
#define EFER_SVME (1 << 12)
#define EFER_LMSLE (1 << 13)
#define EFER_FFXSR (1 << 14)
#define EFER_TCE (1 << 15)
#define PDE32_PRESENT 1
#define PDE32_RW (1 << 1)
#define PDE32_USER (1 << 2)
#define PDE32_PS (1 << 7)
#define PDE64_PRESENT 1
#define PDE64_RW (1 << 1)
#define PDE64_USER (1 << 2)
#define PDE64_ACCESSED (1 << 5)
#define PDE64_DIRTY (1 << 6)
#define PDE64_PS (1 << 7)
#define PDE64_G (1 << 8)

struct tss16 {
	uint16_t prev;
	uint16_t sp0;
	uint16_t ss0;
	uint16_t sp1;
	uint16_t ss1;
	uint16_t sp2;
	uint16_t ss2;
	uint16_t ip;
	uint16_t flags;
	uint16_t ax;
	uint16_t cx;
	uint16_t dx;
	uint16_t bx;
	uint16_t sp;
	uint16_t bp;
	uint16_t si;
	uint16_t di;
	uint16_t es;
	uint16_t cs;
	uint16_t ss;
	uint16_t ds;
	uint16_t ldt;
} __attribute__((packed));

struct tss32 {
	uint16_t prev, prevh;
	uint32_t sp0;
	uint16_t ss0, ss0h;
	uint32_t sp1;
	uint16_t ss1, ss1h;
	uint32_t sp2;
	uint16_t ss2, ss2h;
	uint32_t cr3;
	uint32_t ip;
	uint32_t flags;
	uint32_t ax;
	uint32_t cx;
	uint32_t dx;
	uint32_t bx;
	uint32_t sp;
	uint32_t bp;
	uint32_t si;
	uint32_t di;
	uint16_t es, esh;
	uint16_t cs, csh;
	uint16_t ss, ssh;
	uint16_t ds, dsh;
	uint16_t fs, fsh;
	uint16_t gs, gsh;
	uint16_t ldt, ldth;
	uint16_t trace;
	uint16_t io_bitmap;
} __attribute__((packed));

struct tss64 {
	uint32_t reserved0;
	uint64_t rsp[3];
	uint64_t reserved1;
	uint64_t ist[7];
	uint64_t reserved2;
	uint32_t reserved3;
	uint32_t io_bitmap;
} __attribute__((packed));

static void fill_segment_descriptor(uint64_t* dt, uint64_t* lt, struct kvm_segment* seg)
{
	uint16_t index = seg->selector >> 3;
	uint64_t limit = seg->g ? seg->limit >> 12 : seg->limit;
	uint64_t sd = (limit & 0xffff) | (seg->base & 0xffffff) << 16 | (uint64_t)seg->type << 40 | (uint64_t)seg->s << 44 | (uint64_t)seg->dpl << 45 | (uint64_t)seg->present << 47 | (limit & 0xf0000ULL) << 48 | (uint64_t)seg->avl << 52 | (uint64_t)seg->l << 53 | (uint64_t)seg->db << 54 | (uint64_t)seg->g << 55 | (seg->base & 0xff000000ULL) << 56;
	NONFAILING(dt[index] = sd);
	NONFAILING(lt[index] = sd);
}

static void fill_segment_descriptor_dword(uint64_t* dt, uint64_t* lt, struct kvm_segment* seg)
{
	fill_segment_descriptor(dt, lt, seg);
	uint16_t index = seg->selector >> 3;
	NONFAILING(dt[index + 1] = 0);
	NONFAILING(lt[index + 1] = 0);
}

static void setup_syscall_msrs(int cpufd, uint16_t sel_cs, uint16_t sel_cs_cpl3)
{
	char buf[sizeof(struct kvm_msrs) + 5 * sizeof(struct kvm_msr_entry)];
	memset(buf, 0, sizeof(buf));
	struct kvm_msrs* msrs = (struct kvm_msrs*)buf;
	struct kvm_msr_entry* entries = msrs->entries;
	msrs->nmsrs = 5;
	entries[0].index = MSR_IA32_SYSENTER_CS;
	entries[0].data = sel_cs;
	entries[1].index = MSR_IA32_SYSENTER_ESP;
	entries[1].data = ADDR_STACK0;
	entries[2].index = MSR_IA32_SYSENTER_EIP;
	entries[2].data = ADDR_VAR_SYSEXIT;
	entries[3].index = MSR_IA32_STAR;
	entries[3].data = ((uint64_t)sel_cs << 32) | ((uint64_t)sel_cs_cpl3 << 48);
	entries[4].index = MSR_IA32_LSTAR;
	entries[4].data = ADDR_VAR_SYSRET;
	ioctl(cpufd, KVM_SET_MSRS, msrs);
}

static void setup_32bit_idt(struct kvm_sregs* sregs, char* host_mem, uintptr_t guest_mem)
{
	sregs->idt.base = guest_mem + ADDR_VAR_IDT;
	sregs->idt.limit = 0x1ff;
	uint64_t* idt = (uint64_t*)(host_mem + sregs->idt.base);
	int i;
	for (i = 0; i < 32; i++) {
		struct kvm_segment gate;
		gate.selector = i << 3;
		switch (i % 6) {
		case 0:
			gate.type = 6;
			gate.base = SEL_CS16;
			break;
		case 1:
			gate.type = 7;
			gate.base = SEL_CS16;
			break;
		case 2:
			gate.type = 3;
			gate.base = SEL_TGATE16;
			break;
		case 3:
			gate.type = 14;
			gate.base = SEL_CS32;
			break;
		case 4:
			gate.type = 15;
			gate.base = SEL_CS32;
			break;
		case 6:
			gate.type = 11;
			gate.base = SEL_TGATE32;
			break;
		}
		gate.limit = guest_mem + ADDR_VAR_USER_CODE2;
		gate.present = 1;
		gate.dpl = 0;
		gate.s = 0;
		gate.g = 0;
		gate.db = 0;
		gate.l = 0;
		gate.avl = 0;
		fill_segment_descriptor(idt, idt, &gate);
	}
}

static void setup_64bit_idt(struct kvm_sregs* sregs, char* host_mem, uintptr_t guest_mem)
{
	sregs->idt.base = guest_mem + ADDR_VAR_IDT;
	sregs->idt.limit = 0x1ff;
	uint64_t* idt = (uint64_t*)(host_mem + sregs->idt.base);
	int i;
	for (i = 0; i < 32; i++) {
		struct kvm_segment gate;
		gate.selector = (i * 2) << 3;
		gate.type = (i & 1) ? 14 : 15;
		gate.base = SEL_CS64;
		gate.limit = guest_mem + ADDR_VAR_USER_CODE2;
		gate.present = 1;
		gate.dpl = 0;
		gate.s = 0;
		gate.g = 0;
		gate.db = 0;
		gate.l = 0;
		gate.avl = 0;
		fill_segment_descriptor_dword(idt, idt, &gate);
	}
}

struct kvm_text {
	uintptr_t typ;
	const void* text;
	uintptr_t size;
};

struct kvm_opt {
	uint64_t typ;
	uint64_t val;
};

#define KVM_SETUP_PAGING (1 << 0)
#define KVM_SETUP_PAE (1 << 1)
#define KVM_SETUP_PROTECTED (1 << 2)
#define KVM_SETUP_CPL3 (1 << 3)
#define KVM_SETUP_VIRT86 (1 << 4)
#define KVM_SETUP_SMM (1 << 5)
#define KVM_SETUP_VM (1 << 6)
static long syz_kvm_setup_cpu(volatile long a0, volatile long a1, volatile long a2, volatile long a3, volatile long a4, volatile long a5, volatile long a6, volatile long a7)
{
	const int vmfd = a0;
	const int cpufd = a1;
	char* const host_mem = (char*)a2;
	const struct kvm_text* const text_array_ptr = (struct kvm_text*)a3;
	const uintptr_t text_count = a4;
	const uintptr_t flags = a5;
	const struct kvm_opt* const opt_array_ptr = (struct kvm_opt*)a6;
	uintptr_t opt_count = a7;
	const uintptr_t page_size = 4 << 10;
	const uintptr_t ioapic_page = 10;
	const uintptr_t guest_mem_size = 24 * page_size;
	const uintptr_t guest_mem = 0;
	(void)text_count;
	int text_type = 0;
	const void* text = 0;
	uintptr_t text_size = 0;
	NONFAILING(text_type = text_array_ptr[0].typ);
	NONFAILING(text = text_array_ptr[0].text);
	NONFAILING(text_size = text_array_ptr[0].size);
	uintptr_t i;
	for (i = 0; i < guest_mem_size / page_size; i++) {
		struct kvm_userspace_memory_region memreg;
		memreg.slot = i;
		memreg.flags = 0;
		memreg.guest_phys_addr = guest_mem + i * page_size;
		if (i == ioapic_page)
			memreg.guest_phys_addr = 0xfec00000;
		memreg.memory_size = page_size;
		memreg.userspace_addr = (uintptr_t)host_mem + i * page_size;
		ioctl(vmfd, KVM_SET_USER_MEMORY_REGION, &memreg);
	}
	struct kvm_userspace_memory_region memreg;
	memreg.slot = 1 + (1 << 16);
	memreg.flags = 0;
	memreg.guest_phys_addr = 0x30000;
	memreg.memory_size = 64 << 10;
	memreg.userspace_addr = (uintptr_t)host_mem;
	ioctl(vmfd, KVM_SET_USER_MEMORY_REGION, &memreg);
	struct kvm_sregs sregs;
	if (ioctl(cpufd, KVM_GET_SREGS, &sregs))
		return -1;
	struct kvm_regs regs;
	memset(&regs, 0, sizeof(regs));
	regs.rip = guest_mem + ADDR_TEXT;
	regs.rsp = ADDR_STACK0;
	sregs.gdt.base = guest_mem + ADDR_GDT;
	sregs.gdt.limit = 256 * sizeof(uint64_t) - 1;
	uint64_t* gdt = (uint64_t*)(host_mem + sregs.gdt.base);
	struct kvm_segment seg_ldt;
	seg_ldt.selector = SEL_LDT;
	seg_ldt.type = 2;
	seg_ldt.base = guest_mem + ADDR_LDT;
	seg_ldt.limit = 256 * sizeof(uint64_t) - 1;
	seg_ldt.present = 1;
	seg_ldt.dpl = 0;
	seg_ldt.s = 0;
	seg_ldt.g = 0;
	seg_ldt.db = 1;
	seg_ldt.l = 0;
	sregs.ldt = seg_ldt;
	uint64_t* ldt = (uint64_t*)(host_mem + sregs.ldt.base);
	struct kvm_segment seg_cs16;
	seg_cs16.selector = SEL_CS16;
	seg_cs16.type = 11;
	seg_cs16.base = 0;
	seg_cs16.limit = 0xfffff;
	seg_cs16.present = 1;
	seg_cs16.dpl = 0;
	seg_cs16.s = 1;
	seg_cs16.g = 0;
	seg_cs16.db = 0;
	seg_cs16.l = 0;
	struct kvm_segment seg_ds16 = seg_cs16;
	seg_ds16.selector = SEL_DS16;
	seg_ds16.type = 3;
	struct kvm_segment seg_cs16_cpl3 = seg_cs16;
	seg_cs16_cpl3.selector = SEL_CS16_CPL3;
	seg_cs16_cpl3.dpl = 3;
	struct kvm_segment seg_ds16_cpl3 = seg_ds16;
	seg_ds16_cpl3.selector = SEL_DS16_CPL3;
	seg_ds16_cpl3.dpl = 3;
	struct kvm_segment seg_cs32 = seg_cs16;
	seg_cs32.selector = SEL_CS32;
	seg_cs32.db = 1;
	struct kvm_segment seg_ds32 = seg_ds16;
	seg_ds32.selector = SEL_DS32;
	seg_ds32.db = 1;
	struct kvm_segment seg_cs32_cpl3 = seg_cs32;
	seg_cs32_cpl3.selector = SEL_CS32_CPL3;
	seg_cs32_cpl3.dpl = 3;
	struct kvm_segment seg_ds32_cpl3 = seg_ds32;
	seg_ds32_cpl3.selector = SEL_DS32_CPL3;
	seg_ds32_cpl3.dpl = 3;
	struct kvm_segment seg_cs64 = seg_cs16;
	seg_cs64.selector = SEL_CS64;
	seg_cs64.l = 1;
	struct kvm_segment seg_ds64 = seg_ds32;
	seg_ds64.selector = SEL_DS64;
	struct kvm_segment seg_cs64_cpl3 = seg_cs64;
	seg_cs64_cpl3.selector = SEL_CS64_CPL3;
	seg_cs64_cpl3.dpl = 3;
	struct kvm_segment seg_ds64_cpl3 = seg_ds64;
	seg_ds64_cpl3.selector = SEL_DS64_CPL3;
	seg_ds64_cpl3.dpl = 3;
	struct kvm_segment seg_tss32;
	seg_tss32.selector = SEL_TSS32;
	seg_tss32.type = 9;
	seg_tss32.base = ADDR_VAR_TSS32;
	seg_tss32.limit = 0x1ff;
	seg_tss32.present = 1;
	seg_tss32.dpl = 0;
	seg_tss32.s = 0;
	seg_tss32.g = 0;
	seg_tss32.db = 0;
	seg_tss32.l = 0;
	struct kvm_segment seg_tss32_2 = seg_tss32;
	seg_tss32_2.selector = SEL_TSS32_2;
	seg_tss32_2.base = ADDR_VAR_TSS32_2;
	struct kvm_segment seg_tss32_cpl3 = seg_tss32;
	seg_tss32_cpl3.selector = SEL_TSS32_CPL3;
	seg_tss32_cpl3.base = ADDR_VAR_TSS32_CPL3;
	struct kvm_segment seg_tss32_vm86 = seg_tss32;
	seg_tss32_vm86.selector = SEL_TSS32_VM86;
	seg_tss32_vm86.base = ADDR_VAR_TSS32_VM86;
	struct kvm_segment seg_tss16 = seg_tss32;
	seg_tss16.selector = SEL_TSS16;
	seg_tss16.base = ADDR_VAR_TSS16;
	seg_tss16.limit = 0xff;
	seg_tss16.type = 1;
	struct kvm_segment seg_tss16_2 = seg_tss16;
	seg_tss16_2.selector = SEL_TSS16_2;
	seg_tss16_2.base = ADDR_VAR_TSS16_2;
	seg_tss16_2.dpl = 0;
	struct kvm_segment seg_tss16_cpl3 = seg_tss16;
	seg_tss16_cpl3.selector = SEL_TSS16_CPL3;
	seg_tss16_cpl3.base = ADDR_VAR_TSS16_CPL3;
	seg_tss16_cpl3.dpl = 3;
	struct kvm_segment seg_tss64 = seg_tss32;
	seg_tss64.selector = SEL_TSS64;
	seg_tss64.base = ADDR_VAR_TSS64;
	seg_tss64.limit = 0x1ff;
	struct kvm_segment seg_tss64_cpl3 = seg_tss64;
	seg_tss64_cpl3.selector = SEL_TSS64_CPL3;
	seg_tss64_cpl3.base = ADDR_VAR_TSS64_CPL3;
	seg_tss64_cpl3.dpl = 3;
	struct kvm_segment seg_cgate16;
	seg_cgate16.selector = SEL_CGATE16;
	seg_cgate16.type = 4;
	seg_cgate16.base = SEL_CS16 | (2 << 16);
	seg_cgate16.limit = ADDR_VAR_USER_CODE2;
	seg_cgate16.present = 1;
	seg_cgate16.dpl = 0;
	seg_cgate16.s = 0;
	seg_cgate16.g = 0;
	seg_cgate16.db = 0;
	seg_cgate16.l = 0;
	seg_cgate16.avl = 0;
	struct kvm_segment seg_tgate16 = seg_cgate16;
	seg_tgate16.selector = SEL_TGATE16;
	seg_tgate16.type = 3;
	seg_cgate16.base = SEL_TSS16_2;
	seg_tgate16.limit = 0;
	struct kvm_segment seg_cgate32 = seg_cgate16;
	seg_cgate32.selector = SEL_CGATE32;
	seg_cgate32.type = 12;
	seg_cgate32.base = SEL_CS32 | (2 << 16);
	struct kvm_segment seg_tgate32 = seg_cgate32;
	seg_tgate32.selector = SEL_TGATE32;
	seg_tgate32.type = 11;
	seg_tgate32.base = SEL_TSS32_2;
	seg_tgate32.limit = 0;
	struct kvm_segment seg_cgate64 = seg_cgate16;
	seg_cgate64.selector = SEL_CGATE64;
	seg_cgate64.type = 12;
	seg_cgate64.base = SEL_CS64;
	int kvmfd = open("/dev/kvm", O_RDWR);
	char buf[sizeof(struct kvm_cpuid2) + 128 * sizeof(struct kvm_cpuid_entry2)];
	memset(buf, 0, sizeof(buf));
	struct kvm_cpuid2* cpuid = (struct kvm_cpuid2*)buf;
	cpuid->nent = 128;
	ioctl(kvmfd, KVM_GET_SUPPORTED_CPUID, cpuid);
	ioctl(cpufd, KVM_SET_CPUID2, cpuid);
	close(kvmfd);
	const char* text_prefix = 0;
	int text_prefix_size = 0;
	char* host_text = host_mem + ADDR_TEXT;
	if (text_type == 8) {
		if (flags & KVM_SETUP_SMM) {
			if (flags & KVM_SETUP_PROTECTED) {
				sregs.cs = seg_cs16;
				sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds16;
				sregs.cr0 |= CR0_PE;
			} else {
				sregs.cs.selector = 0;
				sregs.cs.base = 0;
			}
			NONFAILING(*(host_mem + ADDR_TEXT) = 0xf4);
			host_text = host_mem + 0x8000;
			ioctl(cpufd, KVM_SMI, 0);
		} else if (flags & KVM_SETUP_VIRT86) {
			sregs.cs = seg_cs32;
			sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds32;
			sregs.cr0 |= CR0_PE;
			sregs.efer |= EFER_SCE;
			setup_syscall_msrs(cpufd, SEL_CS32, SEL_CS32_CPL3);
			setup_32bit_idt(&sregs, host_mem, guest_mem);
			if (flags & KVM_SETUP_PAGING) {
				uint64_t pd_addr = guest_mem + ADDR_PD;
				uint64_t* pd = (uint64_t*)(host_mem + ADDR_PD);
				NONFAILING(pd[0] = PDE32_PRESENT | PDE32_RW | PDE32_USER | PDE32_PS);
				sregs.cr3 = pd_addr;
				sregs.cr4 |= CR4_PSE;
				text_prefix = kvm_asm32_paged_vm86;
				text_prefix_size = sizeof(kvm_asm32_paged_vm86) - 1;
			} else {
				text_prefix = kvm_asm32_vm86;
				text_prefix_size = sizeof(kvm_asm32_vm86) - 1;
			}
		} else {
			sregs.cs.selector = 0;
			sregs.cs.base = 0;
		}
	} else if (text_type == 16) {
		if (flags & KVM_SETUP_CPL3) {
			sregs.cs = seg_cs16;
			sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds16;
			text_prefix = kvm_asm16_cpl3;
			text_prefix_size = sizeof(kvm_asm16_cpl3) - 1;
		} else {
			sregs.cr0 |= CR0_PE;
			sregs.cs = seg_cs16;
			sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds16;
		}
	} else if (text_type == 32) {
		sregs.cr0 |= CR0_PE;
		sregs.efer |= EFER_SCE;
		setup_syscall_msrs(cpufd, SEL_CS32, SEL_CS32_CPL3);
		setup_32bit_idt(&sregs, host_mem, guest_mem);
		if (flags & KVM_SETUP_SMM) {
			sregs.cs = seg_cs32;
			sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds32;
			NONFAILING(*(host_mem + ADDR_TEXT) = 0xf4);
			host_text = host_mem + 0x8000;
			ioctl(cpufd, KVM_SMI, 0);
		} else if (flags & KVM_SETUP_PAGING) {
			sregs.cs = seg_cs32;
			sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds32;
			uint64_t pd_addr = guest_mem + ADDR_PD;
			uint64_t* pd = (uint64_t*)(host_mem + ADDR_PD);
			NONFAILING(pd[0] = PDE32_PRESENT | PDE32_RW | PDE32_USER | PDE32_PS);
			sregs.cr3 = pd_addr;
			sregs.cr4 |= CR4_PSE;
			text_prefix = kvm_asm32_paged;
			text_prefix_size = sizeof(kvm_asm32_paged) - 1;
		} else if (flags & KVM_SETUP_CPL3) {
			sregs.cs = seg_cs32_cpl3;
			sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds32_cpl3;
		} else {
			sregs.cs = seg_cs32;
			sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds32;
		}
	} else {
		sregs.efer |= EFER_LME | EFER_SCE;
		sregs.cr0 |= CR0_PE;
		setup_syscall_msrs(cpufd, SEL_CS64, SEL_CS64_CPL3);
		setup_64bit_idt(&sregs, host_mem, guest_mem);
		sregs.cs = seg_cs32;
		sregs.ds = sregs.es = sregs.fs = sregs.gs = sregs.ss = seg_ds32;
		uint64_t pml4_addr = guest_mem + ADDR_PML4;
		uint64_t* pml4 = (uint64_t*)(host_mem + ADDR_PML4);
		uint64_t pdpt_addr = guest_mem + ADDR_PDP;
		uint64_t* pdpt = (uint64_t*)(host_mem + ADDR_PDP);
		uint64_t pd_addr = guest_mem + ADDR_PD;
		uint64_t* pd = (uint64_t*)(host_mem + ADDR_PD);
		NONFAILING(pml4[0] = PDE64_PRESENT | PDE64_RW | PDE64_USER | pdpt_addr);
		NONFAILING(pdpt[0] = PDE64_PRESENT | PDE64_RW | PDE64_USER | pd_addr);
		NONFAILING(pd[0] = PDE64_PRESENT | PDE64_RW | PDE64_USER | PDE64_PS);
		sregs.cr3 = pml4_addr;
		sregs.cr4 |= CR4_PAE;
		if (flags & KVM_SETUP_VM) {
			sregs.cr0 |= CR0_NE;
			NONFAILING(*((uint64_t*)(host_mem + ADDR_VAR_VMXON_PTR)) = ADDR_VAR_VMXON);
			NONFAILING(*((uint64_t*)(host_mem + ADDR_VAR_VMCS_PTR)) = ADDR_VAR_VMCS);
			NONFAILING(memcpy(host_mem + ADDR_VAR_VMEXIT_CODE, kvm_asm64_vm_exit, sizeof(kvm_asm64_vm_exit) - 1));
			NONFAILING(*((uint64_t*)(host_mem + ADDR_VAR_VMEXIT_PTR)) = ADDR_VAR_VMEXIT_CODE);
			text_prefix = kvm_asm64_init_vm;
			text_prefix_size = sizeof(kvm_asm64_init_vm) - 1;
		} else if (flags & KVM_SETUP_CPL3) {
			text_prefix = kvm_asm64_cpl3;
			text_prefix_size = sizeof(kvm_asm64_cpl3) - 1;
		} else {
			text_prefix = kvm_asm64_enable_long;
			text_prefix_size = sizeof(kvm_asm64_enable_long) - 1;
		}
	}
	struct tss16 tss16;
	memset(&tss16, 0, sizeof(tss16));
	tss16.ss0 = tss16.ss1 = tss16.ss2 = SEL_DS16;
	tss16.sp0 = tss16.sp1 = tss16.sp2 = ADDR_STACK0;
	tss16.ip = ADDR_VAR_USER_CODE2;
	tss16.flags = (1 << 1);
	tss16.cs = SEL_CS16;
	tss16.es = tss16.ds = tss16.ss = SEL_DS16;
	tss16.ldt = SEL_LDT;
	struct tss16* tss16_addr = (struct tss16*)(host_mem + seg_tss16_2.base);
	NONFAILING(memcpy(tss16_addr, &tss16, sizeof(tss16)));
	memset(&tss16, 0, sizeof(tss16));
	tss16.ss0 = tss16.ss1 = tss16.ss2 = SEL_DS16;
	tss16.sp0 = tss16.sp1 = tss16.sp2 = ADDR_STACK0;
	tss16.ip = ADDR_VAR_USER_CODE2;
	tss16.flags = (1 << 1);
	tss16.cs = SEL_CS16_CPL3;
	tss16.es = tss16.ds = tss16.ss = SEL_DS16_CPL3;
	tss16.ldt = SEL_LDT;
	struct tss16* tss16_cpl3_addr = (struct tss16*)(host_mem + seg_tss16_cpl3.base);
	NONFAILING(memcpy(tss16_cpl3_addr, &tss16, sizeof(tss16)));
	struct tss32 tss32;
	memset(&tss32, 0, sizeof(tss32));
	tss32.ss0 = tss32.ss1 = tss32.ss2 = SEL_DS32;
	tss32.sp0 = tss32.sp1 = tss32.sp2 = ADDR_STACK0;
	tss32.ip = ADDR_VAR_USER_CODE;
	tss32.flags = (1 << 1) | (1 << 17);
	tss32.ldt = SEL_LDT;
	tss32.cr3 = sregs.cr3;
	tss32.io_bitmap = offsetof(struct tss32, io_bitmap);
	struct tss32* tss32_addr = (struct tss32*)(host_mem + seg_tss32_vm86.base);
	NONFAILING(memcpy(tss32_addr, &tss32, sizeof(tss32)));
	memset(&tss32, 0, sizeof(tss32));
	tss32.ss0 = tss32.ss1 = tss32.ss2 = SEL_DS32;
	tss32.sp0 = tss32.sp1 = tss32.sp2 = ADDR_STACK0;
	tss32.ip = ADDR_VAR_USER_CODE;
	tss32.flags = (1 << 1);
	tss32.cr3 = sregs.cr3;
	tss32.es = tss32.ds = tss32.ss = tss32.gs = tss32.fs = SEL_DS32;
	tss32.cs = SEL_CS32;
	tss32.ldt = SEL_LDT;
	tss32.cr3 = sregs.cr3;
	tss32.io_bitmap = offsetof(struct tss32, io_bitmap);
	struct tss32* tss32_cpl3_addr = (struct tss32*)(host_mem + seg_tss32_2.base);
	NONFAILING(memcpy(tss32_cpl3_addr, &tss32, sizeof(tss32)));
	struct tss64 tss64;
	memset(&tss64, 0, sizeof(tss64));
	tss64.rsp[0] = ADDR_STACK0;
	tss64.rsp[1] = ADDR_STACK0;
	tss64.rsp[2] = ADDR_STACK0;
	tss64.io_bitmap = offsetof(struct tss64, io_bitmap);
	struct tss64* tss64_addr = (struct tss64*)(host_mem + seg_tss64.base);
	NONFAILING(memcpy(tss64_addr, &tss64, sizeof(tss64)));
	memset(&tss64, 0, sizeof(tss64));
	tss64.rsp[0] = ADDR_STACK0;
	tss64.rsp[1] = ADDR_STACK0;
	tss64.rsp[2] = ADDR_STACK0;
	tss64.io_bitmap = offsetof(struct tss64, io_bitmap);
	struct tss64* tss64_cpl3_addr = (struct tss64*)(host_mem + seg_tss64_cpl3.base);
	NONFAILING(memcpy(tss64_cpl3_addr, &tss64, sizeof(tss64)));
	if (text_size > 1000)
		text_size = 1000;
	if (text_prefix) {
		NONFAILING(memcpy(host_text, text_prefix, text_prefix_size));
		void* patch = 0;
		NONFAILING(patch = memmem(host_text, text_prefix_size, "\xde\xc0\xad\x0b", 4));
		if (patch)
			NONFAILING(*((uint32_t*)patch) = guest_mem + ADDR_TEXT + ((char*)patch - host_text) + 6);
		uint16_t magic = PREFIX_SIZE;
		patch = 0;
		NONFAILING(patch = memmem(host_text, text_prefix_size, &magic, sizeof(magic)));
		if (patch)
			NONFAILING(*((uint16_t*)patch) = guest_mem + ADDR_TEXT + text_prefix_size);
	}
	NONFAILING(memcpy((void*)(host_text + text_prefix_size), text, text_size));
	NONFAILING(*(host_text + text_prefix_size + text_size) = 0xf4);
	NONFAILING(memcpy(host_mem + ADDR_VAR_USER_CODE, text, text_size));
	NONFAILING(*(host_mem + ADDR_VAR_USER_CODE + text_size) = 0xf4);
	NONFAILING(*(host_mem + ADDR_VAR_HLT) = 0xf4);
	NONFAILING(memcpy(host_mem + ADDR_VAR_SYSRET, "\x0f\x07\xf4", 3));
	NONFAILING(memcpy(host_mem + ADDR_VAR_SYSEXIT, "\x0f\x35\xf4", 3));
	NONFAILING(*(uint64_t*)(host_mem + ADDR_VAR_VMWRITE_FLD) = 0);
	NONFAILING(*(uint64_t*)(host_mem + ADDR_VAR_VMWRITE_VAL) = 0);
	if (opt_count > 2)
		opt_count = 2;
	for (i = 0; i < opt_count; i++) {
		uint64_t typ = 0;
		uint64_t val = 0;
		NONFAILING(typ = opt_array_ptr[i].typ);
		NONFAILING(val = opt_array_ptr[i].val);
		switch (typ % 9) {
		case 0:
			sregs.cr0 ^= val & (CR0_MP | CR0_EM | CR0_ET | CR0_NE | CR0_WP | CR0_AM | CR0_NW | CR0_CD);
			break;
		case 1:
			sregs.cr4 ^= val & (CR4_VME | CR4_PVI | CR4_TSD | CR4_DE | CR4_MCE | CR4_PGE | CR4_PCE |
					    CR4_OSFXSR | CR4_OSXMMEXCPT | CR4_UMIP | CR4_VMXE | CR4_SMXE | CR4_FSGSBASE | CR4_PCIDE |
					    CR4_OSXSAVE | CR4_SMEP | CR4_SMAP | CR4_PKE);
			break;
		case 2:
			sregs.efer ^= val & (EFER_SCE | EFER_NXE | EFER_SVME | EFER_LMSLE | EFER_FFXSR | EFER_TCE);
			break;
		case 3:
			val &= ((1 << 8) | (1 << 9) | (1 << 10) | (1 << 12) | (1 << 13) | (1 << 14) |
				(1 << 15) | (1 << 18) | (1 << 19) | (1 << 20) | (1 << 21));
			regs.rflags ^= val;
			NONFAILING(tss16_addr->flags ^= val);
			NONFAILING(tss16_cpl3_addr->flags ^= val);
			NONFAILING(tss32_addr->flags ^= val);
			NONFAILING(tss32_cpl3_addr->flags ^= val);
			break;
		case 4:
			seg_cs16.type = val & 0xf;
			seg_cs32.type = val & 0xf;
			seg_cs64.type = val & 0xf;
			break;
		case 5:
			seg_cs16_cpl3.type = val & 0xf;
			seg_cs32_cpl3.type = val & 0xf;
			seg_cs64_cpl3.type = val & 0xf;
			break;
		case 6:
			seg_ds16.type = val & 0xf;
			seg_ds32.type = val & 0xf;
			seg_ds64.type = val & 0xf;
			break;
		case 7:
			seg_ds16_cpl3.type = val & 0xf;
			seg_ds32_cpl3.type = val & 0xf;
			seg_ds64_cpl3.type = val & 0xf;
			break;
		case 8:
			NONFAILING(*(uint64_t*)(host_mem + ADDR_VAR_VMWRITE_FLD) = (val & 0xffff));
			NONFAILING(*(uint64_t*)(host_mem + ADDR_VAR_VMWRITE_VAL) = (val >> 16));
			break;
		default:
	exit(1);
		}
	}
	regs.rflags |= 2;
	fill_segment_descriptor(gdt, ldt, &seg_ldt);
	fill_segment_descriptor(gdt, ldt, &seg_cs16);
	fill_segment_descriptor(gdt, ldt, &seg_ds16);
	fill_segment_descriptor(gdt, ldt, &seg_cs16_cpl3);
	fill_segment_descriptor(gdt, ldt, &seg_ds16_cpl3);
	fill_segment_descriptor(gdt, ldt, &seg_cs32);
	fill_segment_descriptor(gdt, ldt, &seg_ds32);
	fill_segment_descriptor(gdt, ldt, &seg_cs32_cpl3);
	fill_segment_descriptor(gdt, ldt, &seg_ds32_cpl3);
	fill_segment_descriptor(gdt, ldt, &seg_cs64);
	fill_segment_descriptor(gdt, ldt, &seg_ds64);
	fill_segment_descriptor(gdt, ldt, &seg_cs64_cpl3);
	fill_segment_descriptor(gdt, ldt, &seg_ds64_cpl3);
	fill_segment_descriptor(gdt, ldt, &seg_tss32);
	fill_segment_descriptor(gdt, ldt, &seg_tss32_2);
	fill_segment_descriptor(gdt, ldt, &seg_tss32_cpl3);
	fill_segment_descriptor(gdt, ldt, &seg_tss32_vm86);
	fill_segment_descriptor(gdt, ldt, &seg_tss16);
	fill_segment_descriptor(gdt, ldt, &seg_tss16_2);
	fill_segment_descriptor(gdt, ldt, &seg_tss16_cpl3);
	fill_segment_descriptor_dword(gdt, ldt, &seg_tss64);
	fill_segment_descriptor_dword(gdt, ldt, &seg_tss64_cpl3);
	fill_segment_descriptor(gdt, ldt, &seg_cgate16);
	fill_segment_descriptor(gdt, ldt, &seg_tgate16);
	fill_segment_descriptor(gdt, ldt, &seg_cgate32);
	fill_segment_descriptor(gdt, ldt, &seg_tgate32);
	fill_segment_descriptor_dword(gdt, ldt, &seg_cgate64);
	if (ioctl(cpufd, KVM_SET_SREGS, &sregs))
		return -1;
	if (ioctl(cpufd, KVM_SET_REGS, &regs))
		return -1;
	return 0;
}

static void kill_and_wait(int pid, int* status)
{
	kill(-pid, SIGKILL);
	kill(pid, SIGKILL);
	int i;
	for (i = 0; i < 100; i++) {
		if (waitpid(-1, status, WNOHANG | __WALL) == pid)
			return;
		usleep(1000);
	}
	DIR* dir = opendir("/sys/fs/fuse/connections");
	if (dir) {
		for (;;) {
			struct dirent* ent = readdir(dir);
			if (!ent)
				break;
			if (strcmp(ent->d_name, ".") == 0 || strcmp(ent->d_name, "..") == 0)
				continue;
			char abort[300];
			snprintf(abort, sizeof(abort), "/sys/fs/fuse/connections/%s/abort", ent->d_name);
			int fd = open(abort, O_WRONLY);
			if (fd == -1) {
				continue;
			}
			if (write(fd, abort, 1) < 0) {
			}
			close(fd);
		}
		closedir(dir);
	} else {
	}
	while (waitpid(-1, status, __WALL) != pid) {
	}
}

#define SYZ_HAVE_SETUP_TEST 1
static void setup_test()
{
	prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0);
	setpgrp();
	write_file("/proc/self/oom_score_adj", "1000");
}

static void execute_one(void);

#define WAIT_FLAGS __WALL

static void loop(void)
{
	int iter;
	for (iter = 0;; iter++) {
		int pid = fork();
		if (pid < 0)
	exit(1);
		if (pid == 0) {
			setup_test();
			execute_one();
			exit(0);
		}
		int status = 0;
		uint64_t start = current_time_ms();
		for (;;) {
			if (waitpid(-1, &status, WNOHANG | WAIT_FLAGS) == pid)
				break;
			sleep_ms(1);
			if (current_time_ms() - start < 5 * 1000)
				continue;
			kill_and_wait(pid, &status);
			break;
		}
	}
}

uint64_t r[3] = {0xffffffffffffffff, 0xffffffffffffffff, 0xffffffffffffffff};

void execute_one(void)
{
		long res = 0;
	NONFAILING(memcpy((void*)0x200011c0, "/dev/kvm\000", 9));
	res = syscall(__NR_openat, 0xffffffffffffff9c, 0x200011c0, 0x2000, 0);
	if (res != -1)
		r[0] = res;
	res = syscall(__NR_ioctl, r[0], 0xae01, 0);
	if (res != -1)
		r[1] = res;
	res = syscall(__NR_ioctl, r[1], 0xae41, 0);
	if (res != -1)
		r[2] = res;
	syz_kvm_setup_cpu(r[1], r[2], 0x20fe5000, 0, 0, 0, 0, 0);
	syscall(__NR_ioctl, r[2], 0xae80, 0);

}
int main(void)
{
		syscall(__NR_mmap, 0x20000000, 0x1000000, 3, 0x32, -1, 0);
	install_segv_handler();
	for (procid = 0; procid < 8; procid++) {
		if (fork() == 0) {
			loop();
		}
	}
	sleep(1000000);
	return 0;
}




[Index of Archives]     [KVM ARM]     [KVM ia64]     [KVM ppc]     [Virtualization Tools]     [Spice Development]     [Libvirt]     [Libvirt Users]     [Linux USB Devel]     [Linux Audio Users]     [Yosemite Questions]     [Linux Kernel]     [Linux SCSI]     [XFree86]

  Powered by Linux