From: Alison Schofield <alison.schofield@xxxxxxxxx> Provide an overview of MKTME on Intel Platforms. Signed-off-by: Alison Schofield <alison.schofield@xxxxxxxxx> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@xxxxxxxxxxxxxxx> --- Documentation/x86/mktme/index.rst | 8 +++ Documentation/x86/mktme/mktme_overview.rst | 57 ++++++++++++++++++++++ 2 files changed, 65 insertions(+) create mode 100644 Documentation/x86/mktme/index.rst create mode 100644 Documentation/x86/mktme/mktme_overview.rst diff --git a/Documentation/x86/mktme/index.rst b/Documentation/x86/mktme/index.rst new file mode 100644 index 000000000000..1614b52dd3e9 --- /dev/null +++ b/Documentation/x86/mktme/index.rst @@ -0,0 +1,8 @@ + +========================================= +Multi-Key Total Memory Encryption (MKTME) +========================================= + +.. toctree:: + + mktme_overview diff --git a/Documentation/x86/mktme/mktme_overview.rst b/Documentation/x86/mktme/mktme_overview.rst new file mode 100644 index 000000000000..59c023965554 --- /dev/null +++ b/Documentation/x86/mktme/mktme_overview.rst @@ -0,0 +1,57 @@ +Overview +========= +Multi-Key Total Memory Encryption (MKTME)[1] is a technology that +allows transparent memory encryption in upcoming Intel platforms. +It uses a new instruction (PCONFIG) for key setup and selects a +key for individual pages by repurposing physical address bits in +the page tables. + +Support for MKTME is added to the existing kernel keyring subsystem +and via a new mprotect_encrypt() system call that can be used by +applications to encrypt anonymous memory with keys obtained from +the keyring. + +This architecture supports encrypting both normal, volatile DRAM +and persistent memory. However, persistent memory support is +not included in the Linux kernel implementation at this time. +(We anticipate adding that support next.) + +Hardware Background +=================== + +MKTME is built on top of an existing single-key technology called +TME. TME encrypts all system memory using a single key generated +by the CPU on every boot of the system. TME provides mitigation +against physical attacks, such as physically removing a DIMM or +watching memory bus traffic. + +MKTME enables the use of multiple encryption keys[2], allowing +selection of the encryption key per-page using the page tables. +Encryption keys are programmed into each memory controller and +the same set of keys is available to all entities on the system +with access to that memory (all cores, DMA engines, etc...). + +MKTME inherits many of the mitigations against hardware attacks +from TME. Like TME, MKTME does not mitigate vulnerable or +malicious operating systems or virtual machine managers. MKTME +offers additional mitigations when compared to TME. + +TME and MKTME use the AES encryption algorithm in the AES-XTS +mode. This mode, typically used for block-based storage devices, +takes the physical address of the data into account when +encrypting each block. This ensures that the effective key is +different for each block of memory. Moving encrypted content +across physical address results in garbage on read, mitigating +block-relocation attacks. This property is the reason many of +the discussed attacks require control of a shared physical page +to be handed from the victim to the attacker. + +-- +1. https://software.intel.com/sites/default/files/managed/a5/16/Multi-Key-Total-Memory-Encryption-Spec.pdf +2. The MKTME architecture supports up to 16 bits of KeyIDs, so a + maximum of 65535 keys on top of the “TME key” at KeyID-0. The + first implementation is expected to support 5 bits, making 63 + keys available to applications. However, this is not guaranteed. + The number of available keys could be reduced if, for instance, + additional physical address space is desired over additional + KeyIDs. -- 2.20.1