This design overview will help to digest the subsequent patches that implement AT instruction emulation. Signed-off-by: Jintack Lim <jintack.lim@xxxxxxxxxx> --- arch/arm64/kvm/sys_regs.c | 66 +++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 66 insertions(+) diff --git a/arch/arm64/kvm/sys_regs.c b/arch/arm64/kvm/sys_regs.c index 8d04926..d8728cc 100644 --- a/arch/arm64/kvm/sys_regs.c +++ b/arch/arm64/kvm/sys_regs.c @@ -1621,6 +1621,72 @@ static bool access_id_aa64mmfr0_el1(struct kvm_vcpu *v, { SYS_DESC(SYS_SP_EL2), NULL, reset_special, SP_EL2, 0}, }; +/* + * AT instruction emulation + * + * We emulate AT instructions executed in the virtual EL2. + * Basic strategy for the stage-1 translation emulation is to load proper + * context, which depends on the trapped instruction and the virtual HCR_EL2, + * to the EL1 virtual memory control registers and execute S1E[01] instructions + * in EL2. See below for more detail. + * + * For the stage-2 translation, which is necessary for S12E[01] emulation, + * we walk the guest hypervisor's stage-2 page table in software. + * + * The stage-1 translation emulations can be divided into two groups depending + * on the translation regime. + * + * 1. EL2 AT instructions: S1E2x + * +-----------------------------------------------------------------------+ + * | | Setting for the emulation | + * | Virtual HCR_EL2.E2H on trap |-----------------------------------------+ + * | | Phys EL1 regs | Phys NV, NV1 | Phys TGE | + * |-----------------------------------------------------------------------| + * | 0 | vEL2 | (1, 1) | 0 | + * | 1 | vEL2 | (0, 0) | 0 | + * +-----------------------------------------------------------------------+ + * + * We emulate the EL2 AT instructions by loading virtual EL2 context + * to the EL1 virtual memory control registers and executing corresponding + * EL1 AT instructions. + * + * We set physical NV and NV1 bits to use EL2 page table format for non-VHE + * guest hypervisor (i.e. HCR_EL2.E2H == 0). As a VHE guest hypervisor uses the + * EL1 page table format, we don't set those bits. + * + * We should clear physical TGE bit not to use the EL2 translation regime when + * the host uses the VHE feature. + * + * + * 2. EL0/EL1 AT instructions: S1E[01]x, S12E1x + * +----------------------------------------------------------------------+ + * | Virtual HCR_EL2 on trap | Setting for the emulation | + * |----------------------------------------------------------------------+ + * | (vE2H, vTGE) | (vNV, vNV1) | Phys EL1 regs | Phys NV, NV1 | Phys TGE | + * |----------------------------------------------------------------------| + * | (0, 0)* | (0, 0) | vEL1 | (0, 0) | 0 | + * | (0, 0) | (1, 1) | vEL1 | (1, 1) | 0 | + * | (1, 1) | (0, 0) | vEL2 | (0, 0) | 0 | + * | (1, 1) | (1, 1) | vEL2 | (1, 1) | 0 | + * +----------------------------------------------------------------------+ + * + * *For (0, 0) in the 'Virtual HCR_EL2 on trap' column, it actually means + * (1, 1). Keep them (0, 0) just for the readability. + * + * We set physical EL1 virtual memory control registers depending on + * (vE2H, vTGE) pair. When the pair is (0, 0) where AT instructions are + * supposed to use EL0/EL1 translation regime, we load the EL1 registers with + * the virtual EL1 registers (i.e. EL1 registers from the guest hypervisor's + * point of view). When the pair is (1, 1), however, AT instructions are defined + * to apply EL2 translation regime. To emulate this behavior, we load the EL1 + * registers with the virtual EL2 context. (i.e the shadow registers) + * + * We respect the virtual NV and NV1 bit for the emulation. When those bits are + * set, it means that a guest hypervisor would like to use EL2 page table format + * for the EL1 translation regime. We emulate this by setting the physical + * NV and NV1 bits. + */ + #define SYS_INSN_TO_DESC(insn, access_fn, forward_fn) \ { SYS_DESC((insn)), (access_fn), NULL, 0, 0, NULL, NULL, (forward_fn) } static struct sys_reg_desc sys_insn_descs[] = { -- 1.9.1