[PATCH v2] KVM: arm/arm64: Let vcpu thread modify its own active state

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



From: Jintack Lim <jintack@xxxxxxxxxxxxxxx>

Currently, if a vcpu thread tries to change the active state of an
interrupt which is already on the same vcpu's AP list, Since the VGIC
mmio handler is called after a vcpu has already synced back the LR state
to the struct vgic_irq, we can just let it proceed safely.

Signed-off-by: Jintack Lim <jintack@xxxxxxxxxxxxxxx>
---
Changes since v1:
 - Reworked comment
 - Consider userspace accesses
 - Get the right requester VCPU for GICv3 private IRQ accesses
 - Tested using kvm-unit-tests and verified that it deadlocked without
   this patch and passed the test with this patch :)

 virt/kvm/arm/vgic/vgic-mmio.c | 32 ++++++++++++++++++++++++--------
 1 file changed, 24 insertions(+), 8 deletions(-)

diff --git a/virt/kvm/arm/vgic/vgic-mmio.c b/virt/kvm/arm/vgic/vgic-mmio.c
index 3654b4c..2a5db13 100644
--- a/virt/kvm/arm/vgic/vgic-mmio.c
+++ b/virt/kvm/arm/vgic/vgic-mmio.c
@@ -180,21 +180,37 @@ unsigned long vgic_mmio_read_active(struct kvm_vcpu *vcpu,
 static void vgic_mmio_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
 				    bool new_active_state)
 {
+	struct kvm_vcpu *requester_vcpu;
 	spin_lock(&irq->irq_lock);
+
+	/*
+	 * The vcpu parameter here can mean multiple things depending on how
+	 * this function is called; when handling a trap from the kernel it
+	 * depends on the GIC version, and these functions are also called as
+	 * part of save/restore from userspace.
+	 *
+	 * Therefore, we have to figure out the requester in a reliable way.
+	 *
+	 * When accessing VGIC state from user space, the requester_vcpu is
+	 * NULL, which is fine, because we guarantee that no VCPUs are running
+	 * when accessing VGIC state from user space so irq->vcpu->cpu is
+	 * always -1.
+	 */
+	requester_vcpu = kvm_arm_get_running_vcpu();
+
 	/*
 	 * If this virtual IRQ was written into a list register, we
 	 * have to make sure the CPU that runs the VCPU thread has
-	 * synced back LR state to the struct vgic_irq.  We can only
-	 * know this for sure, when either this irq is not assigned to
-	 * anyone's AP list anymore, or the VCPU thread is not
-	 * running on any CPUs.
+	 * synced back the LR state to the struct vgic_irq.
 	 *
-	 * In the opposite case, we know the VCPU thread may be on its
-	 * way back from the guest and still has to sync back this
-	 * IRQ, so we release and re-acquire the spin_lock to let the
-	 * other thread sync back the IRQ.
+	 * As long as the conditions below are true, we know the VCPU thread
+	 * may be on its way back from the guest (we kicked the VCPU thread in
+	 * vgic_change_active_prepare)  and still has to sync back this IRQ,
+	 * so we release and re-acquire the spin_lock to let the other thread
+	 * sync back the IRQ.
 	 */
 	while (irq->vcpu && /* IRQ may have state in an LR somewhere */
+	       irq->vcpu != requester_vcpu && /* Current thread is not the VCPU thread */
 	       irq->vcpu->cpu != -1) /* VCPU thread is running */
 		cond_resched_lock(&irq->irq_lock);
 
-- 
2.5.0




[Index of Archives]     [KVM ARM]     [KVM ia64]     [KVM ppc]     [Virtualization Tools]     [Spice Development]     [Libvirt]     [Libvirt Users]     [Linux USB Devel]     [Linux Audio Users]     [Yosemite Questions]     [Linux Kernel]     [Linux SCSI]     [XFree86]

  Powered by Linux