The pvclock vdso code was too abstracted to understand easily and excessively paranoid. Simplify it for a huge speedup. This opens the door for additional simplifications, as the vdso no longer accesses the pvti for any vcpu other than vcpu 0. Before, vclock_gettime using kvm-clock took about 64ns on my machine. With this change, it takes 19ns, which is almost as fast as the pure TSC implementation. Signed-off-by: Andy Lutomirski <luto@xxxxxxxxxxxxxx> --- arch/x86/vdso/vclock_gettime.c | 82 ++++++++++++++++++++++++------------------ 1 file changed, 47 insertions(+), 35 deletions(-) diff --git a/arch/x86/vdso/vclock_gettime.c b/arch/x86/vdso/vclock_gettime.c index 9793322751e0..f2e0396d5629 100644 --- a/arch/x86/vdso/vclock_gettime.c +++ b/arch/x86/vdso/vclock_gettime.c @@ -78,47 +78,59 @@ static notrace const struct pvclock_vsyscall_time_info *get_pvti(int cpu) static notrace cycle_t vread_pvclock(int *mode) { - const struct pvclock_vsyscall_time_info *pvti; + const struct pvclock_vcpu_time_info *pvti = &get_pvti(0)->pvti; cycle_t ret; - u64 last; - u32 version; - u8 flags; - unsigned cpu, cpu1; - + u64 tsc, pvti_tsc; + u64 last, delta, pvti_system_time; + u32 version, pvti_tsc_to_system_mul, pvti_tsc_shift; /* - * Note: hypervisor must guarantee that: - * 1. cpu ID number maps 1:1 to per-CPU pvclock time info. - * 2. that per-CPU pvclock time info is updated if the - * underlying CPU changes. - * 3. that version is increased whenever underlying CPU - * changes. + * Note: The kernel and hypervisor must guarantee that cpu ID + * number maps 1:1 to per-CPU pvclock time info. + * + * Because the hypervisor is entirely unaware of guest userspace + * preemption, it cannot guarantee that per-CPU pvclock time + * info is updated if the underlying CPU changes or that that + * version is increased whenever underlying CPU changes. + * + * On KVM, we are guaranteed that pvti updates for any vCPU are + * atomic as seen by *all* vCPUs. This is an even stronger + * guarantee than we get with a normal seqlock. * + * On Xen, we don't appear to have that guarantee, but Xen still + * supplies a valid seqlock using the version field. + + * We only do pvclock vdso timing at all if + * PVCLOCK_TSC_STABLE_BIT is set, and we interpret that bit to + * mean that all vCPUs have matching pvti and that the TSC is + * synced, so we can just look at vCPU 0's pvti. */ - do { - cpu = __getcpu() & VGETCPU_CPU_MASK; - /* TODO: We can put vcpu id into higher bits of pvti.version. - * This will save a couple of cycles by getting rid of - * __getcpu() calls (Gleb). - */ - - pvti = get_pvti(cpu); - - version = __pvclock_read_cycles(&pvti->pvti, &ret, &flags); - - /* - * Test we're still on the cpu as well as the version. - * We could have been migrated just after the first - * vgetcpu but before fetching the version, so we - * wouldn't notice a version change. - */ - cpu1 = __getcpu() & VGETCPU_CPU_MASK; - } while (unlikely(cpu != cpu1 || - (pvti->pvti.version & 1) || - pvti->pvti.version != version)); - - if (unlikely(!(flags & PVCLOCK_TSC_STABLE_BIT))) + + if (unlikely(!(pvti->flags & PVCLOCK_TSC_STABLE_BIT))) { *mode = VCLOCK_NONE; + return 0; + } + + do { + version = pvti->version; + + /* This is also a read barrier, so we'll read version first. */ + rdtsc_barrier(); + tsc = __native_read_tsc(); + + pvti_tsc_to_system_mul = pvti->tsc_to_system_mul; + pvti_tsc_shift = pvti->tsc_shift; + pvti_system_time = pvti->system_time; + pvti_tsc = pvti->tsc_timestamp; + + /* Make sure that the version double-check is last. */ + smp_rmb(); + } while (unlikely((version & 1) || version != pvti->version)); + + delta = tsc - pvti_tsc; + ret = pvti_system_time + + pvclock_scale_delta(delta, pvti_tsc_to_system_mul, + pvti_tsc_shift); /* refer to tsc.c read_tsc() comment for rationale */ last = gtod->cycle_last; -- 2.1.0 -- To unsubscribe from this list: send the line "unsubscribe kvm" in the body of a message to majordomo@xxxxxxxxxxxxxxx More majordomo info at http://vger.kernel.org/majordomo-info.html