
Navigating the x86 TSC/kvmclock maze

Clocks on x86

TIME STAMP COUNTER (TSC)

Setting ancient history aside, time on x86 is derived from the Time Stamp Counter (TSC); a counter which is readable directly

from the CPU as a Machine Specific Register (MSR).

There have been a number of issues with the TSC on historical x86 platforms, where it would either stop counting or change

frequency according to the behaviour of the CPU itself, or where it (and even its frequency) might differ from one CPU to another.

These issues should no longer exist on modern hardware, but KVM still has code to work around them and present a sane-ish

environment to guests.

A number of CPUID or hypervisor ‘features’ exist to advertise the lack of certain problems:

The handling of the guest TSC is fairly simple. Modern CPUs allow the host to provide both an offset and a scaling factor to be

applied by hardware while running in guest vCPU mode. Even where scaling isn’t supported, KVM will allow a guest vCPU to

run faster than the host, by artificially advancing the offset each time the vCPU is entered. During a given period of the vCPU

running in guest mode, its TSC will run slower than it should, but will catch up after the next VMExit.

KVM CLOCK (AND XEN CLOCK)

Both KVM and Xen expose an identical clock to guests, indicating the time in nanoseconds which the guest has been running for.

By means of a virtual MSR or hypercall, the guest asks the hypervisor to populate the following structure in guest memory:

This struct is per-vCPU because, in theory, each vCPU’s TSC could run at a different rate, and/or have a different offset.

The values of and represent the guest TSC value and the VM uptime in nanoseconds at an

arbitrary point in time, while and provide a conversion from the guest TSC ticks to

nanoseconds. The uptime, calculated by the __pvclock_read_cycles() function in Linux’s , is:

kvmclock_ns = + (((-) *) >>)

In an ideal world where the TSC is reliable and synchronized across vCPUs, the contents of this structure should be identical for

all vCPUs and should never change. However, if the host’s TSC does suffer discontinuities, KVM will modify the contents of the

structure for each vCPU accordingly.

KVM Userspace Clock APIs

KVM_SET_TSC_KHZ

This ioctl allows userspace to set the TSC frequency for a given vCPU. When when invoked with the KVM file descriptor, sets the

default TSC frequency for all subsequently created vCPUs. Modern CPUs support hardware TSC scaling, presenting an

apparent TSC frequency to the guest which differs from the true host TSC frequency.

However, the precise effect will differ between AMD and Intel hardware, because the scaling uses a hard-coded shift; Intel CPUs

multiply the host TSC by a given factor and then shift right by 48 bits, while AMD multiplies by the factor and then shifts by 32

bits. Without hardware support for TSC scaling, KVM artificially advances the TSC each time it enters the guest (and the TSC

runs ‘too slow’ for the period while inside the guest).

KVM_SET_MSRS(MSR_IA32_TSC)

As an MSR, the TSC is directly writable by either the guest or the host. Writing to the TSC sets its value at the specific moment

that the write takes effect, which is fundamentally imprecise. To compensate for this, KVM has a nasty hack. It keeps track of the

last TSC value that was written for any vCPU, and the (host CLOCK_MONOTONIC_RAW) time at which it was written.

When userspace subsequently writes a TSC value on any vCPU which is within a second’s worth of where that previously-written

TSC would now be, KVM ‘snaps’ the result to be precisely the same, by using the same offset for host→guest translation.

KVM_SET_DEVICE_ATTR(KVM_VCPU_TSC_OFFSET)

This is a more useful way of setting the guest TSC for a given vCPU, as an offset from the host’s TSC. With TSC scaling

enabled, this is an offset from the scaled TSC (that is, this offset is applied after scaling).

For live update, this API allows for a cycle-accurate restoration of the guest TSC because the host’s TSC will have continued to

tick at precisely the same rate.

KVM_SET_CLOCK

This ioctl allows for two modes of setting the clock. The simplest invocation allows userspace to set the clock at the moment the

ioctl takes effect. As with directly writing a TSC value, this is fundamentally imprecise.

A more subtly broken version also exists, using a flag. In theory, this allows userspace to save and

restore a pair of { real time, kvmclock } values at a given moment in time. However, in interpreting these values, KVM still

introduces errors by performing two separate clock reads at different times, for the ‘real time’ and the monotonic time, and then

assuming they were simultaneous. Furthermore, this API uses CLOCK_REALTIME (UTC) as its reference instead of

CLOCK_TAI, leading to errors if migration occurs in the vicinity of a leap second.

Inaccuracies due to arithmetic precision

The KVM clock is bound to the host’s CLOCK_MONOTONIC_RAW. This differs from CLOCK_MONOTONIC in that it is not

subject to frequency adjustment from NTP. Therefore it should be a precise function of the host’s TSC, just as the KVM clock is.

So theoretically, if KVM were to periodically update the and with values from a new read of

CLOCK_MONOTONIC_RAW, it should have no effect on the result... right?

Sadly, that doesn’t turn out to be true because the precise method of converting ticks to nanoseconds differs between

CLOCK_MONOTONIC_RAW (which has been refined for precision), and the KVM clock (which is limited to what can be

expressed in the ABI structure above). This means that there is a systemic drift between CLOCK_MONOTONIC_RAW and the

KVM clock as observed by the guest. If the kernel ever recalculates the contents of the KVM clock structure, it can cause time to

jump in the guest, and even to jump backwards. KVM used to perform such a recalculation on vCPU hotplug, but that was fixed

in commit c52ffadc65e2 ("KVM: x86: Don't unnecessarily force masterclock update on vCPU hotplug").

Another source of systemic drift occurs between the function and the time observed by the guest,

because the kernel function converts directly from host TSC cycles while the guest necessarily uses a TSC value which is

already scaled to the guest TSC frequency. This caused errors in the delivery of Xen timers until it was fixed (just for Xen timers)

in commit 451a707813ae (“KVM: x86/xen: improve accuracy of Xen timers”). The function has not yet

been fixed for the general case.

Inaccuracies due to KVM_REQ_MASTERCLOCK_UPDATE

When generating the pvclock data structure, the function uses a field in

the KVM structure. It calculates the value of CLOCK_MONOTONIC_RAW at a given moment along with the host TSC at that

same moment, then applies the to that, and fills in the structure accordingly.

On a system with a reliable TSC, the moment advertised to the guest as the reference point for the KVM clock should not

change. It is stored in the and fields of the KVM structure. Only in the

pathological case does actually use CLOCK_MONOTONIC_RAW (via

to calculate the values to expose to the guest.

Ultimately, this means that the KVM clock is bi-modal. In the sane case (when the flag is set), it is defined

by and , and counts at the rate of the guest TSC. When the master clock is not

being used, because the host TSC is unreliable or because the guest TSCs are out of sync, the KVM clock is defined by the

host’s CLOCK_MONOTONIC_RAW and . So while operating in master clock mode, the

value should actually vary as the clock calculated by the guest TSC drifts from the host’s

.

In mode, the discontinuity is only exposed when a request occurs.

Even with a sane TSC, this used to happen on a vCPU hotplug, but that was fixed in commit c52ffadc65e2 (“KVM: x86: Don’t

unnecessarily force masterclock update on vCPU hotplug”). For reasons explained in that commit, the masterclock update does

still happen when a guest TSC is written to a value which isn’t in sync with the other vCPUs, but that should not be a problem in

normal operation.

There is a special case here for the old MSR_KVM_SYSTEM_TIME, which historically was moved to

MSR_KVM_SYSTEM_TIME_NEW purely because it sat in the wrong number range. But an old SUSE 2.6.16 kernel had a bug

where if the reference point in the pvclock information was too far in the past (as happens in master clock mode), it would fail to

boot. This was worked around in commit 54750f2cf042 (“KVM: x86: workaround SuSE's 2.6.16 pvclock vs masterclock issue“) by

treating the old MSR_KVM_SYSTEM_TIME the same as the unreliable-TSC case, and disabling masterclock mode support.

When setting shared_info page, the Xen support in KVM also triggers a . This is a bug; it

shouldn’t. There are other cases in KVM which look wrong too, and should be audited.

Migration

For the TSC this is fairly simple. Live update can be performed in a cycle-accurate way as long as the offset method is used to

save and restore the guest TSC across the update.

Preserving the TSC across live migration is harder. Fundamentally, the accuracy of any such migration is limited to the accuracy

of the source and destination droplets’ clocks, as synchronized by NTP or other methods. But KVM makes it harder than it needs

to be. In fact the KVM_GET_CLOCK ioctl does return a full set of { real time, kvmclock, host tsc } at a given moment. We can

ignore the kvmclock part of that and just use it to know the host TSC at a given time. The KVM documentation describes an

algorithm to migrate guest TSCs by using this, although it doesn’t take TSC frequency scaling or leap seconds into account.

The KVM clock, on the other hand, ought to be simple. If the TSC and its frequency are preserved correctly, then

the and fields of the KVM clock structure should be identical. Sadly, that isn’t how KVM does

things. All we have is the KVM_SET_CLOCK ioctl, which sets the KVM clock to a certain value at a given moment in wallclock

time, but wallclock time is skewed by NTP and ambiguous due to leap seconds.

Previous attempts at fixes

●

●

[PATCH v2] KVM: x86: add KVM_VCPU_TSC_VALUE attribute (sveith@amazon.com, 2023-02-02):

This attempts to address the TSC migration problem. It adds a way to set the guest TSC at a given moment in KVM clock

time.

[RFC] KVM: x86: Add KVM_VCPU_TSC_SCALE and fix the documentation on TSC migration

(dwmw2@infradead.org, 2023-09-13):

This was a straw man proposal, highlighting the ugliness of the ‘how to migrate TSC’ documentation if we do it this way.

I’ve since changed my mind, as the KVM_VCPU_TSC_VALUE proposal to set TSC based on KVM clock misses the fact

that the KVM clock is derived from the TSC in the first place. And we need KVM_VCPU_TSC_SCALE to calculate and

migrate the KVM clock precisely anyway.

Fixing the mess

●

●

●

●

●

○

○

○

○

○

○

Add KVM unit test to validate that KVM clock does not change when provoked (including by simulated live update).

It’s OK for the reference point at in the pvclock structure to change, but only

such that it gives the same results for a given guest TSC — that is, if changes, then

must change by a delta which precisely corresponds in terms of the advertised guest TSC frequency. Perhaps allow a slop

of 1ns for rounding, but no more.

Audit and fix (i.e. remove) usage, starting

with . And work out whether it should be sent to all vCPUs, as some call sites do, or

just one?

Add KVM_VCPU_TSC_SCALE attribute to allow userspace to know the precise host→guest TSC scaling.

Expose guest’s view of KVM clock to userspace via ioctl. Perhaps also a memory-mapped

version, as the gfn_to_pfn_cache allows writing to userspace HVAs. With this, userspace has fast and accurate way to

calculate the KVM clock at any given moment in time. (Currently, userspace calls the ioctl which is slow

and returns inaccurate results). Then userspace can base other things like PIT and HPET emulation on the KVM clock and

simplify timekeeping over migration for those too.

Add a ioctl which consumes the pvclock information back again. This should not only set the

field, but also set the reference point as

follows:

Sample the kernel’s CLOCK_MONOTONIC_RAW to create a new

and .

Convert the new to a guest TSC.

Calculate the intended KVM clock with that guest TSC from the provided pvclock information.

Calculate the current KVM clock with that guest TSC using the new and

and as usual.

Adjust to correct for the delta between current and intended values.

Raise on all vCPUs.

●

●

●

●

○

■

□

□

□

□

■

□

□

□

■

○

■

□

□

□

□

■

■

□

●

●

□

□

□

■

Fix the broken function to scale via the guest’s TSC frequency as it should. There isn’t necessarily

a vCPU to use for this, so it’s OK for this to work only when the frequency has been set of the whole VM rather than only

for individual vCPUs. Likewise which has the same bug.

Fix all other cases where KVM reads the time in two places separately and then treats them as simultaneous.

Fix the discontinuities in by allowing to vary while the VM is

running in master clock mode. Perhaps every call to which starts in master

clock mode should follow the same process as the proposed to adjust the

value which corresponds with the new reference point. As long as we don’t break in the case where

something weird (host hibernation, etc.) happened to the TSC, and we actually want to trust . Maybe

we should have a periodic work queue which keeps in sync with the KVM clock while the VM is in

master clock mode?

Correct the KVM documentation for TSC migration to take TSC scaling into account. Something like...

(SOURCE)

Sample both TAI and the (source) host TSC at an arbitrary time we shall call Tsrc:

Use adjtimex() to obtain .

Use to read UTC time and host TSC (ignoring the actual kvm clock). These

represent time Tsrc.

Use adjtimex() to obtain again, looping back to the beginning if it changes.

Convert the UTC time to TAI by adding the .

∀ vCPU:

Read the scaling information with the attribute.

Read the offset with the attribute.

Calculate this vCPU’s TSC at the moment of , from the host TSC value.

Use to read the KVM clock (on vCPU0).

(DESTINATION)

Sample both TAI and the (destination) host TSC at a time we shall call Tdst:

Use adjtimex() to obtain .

Use to read UTC time and host TSC.

Use adjtimex() to obtain again, looping back to the beginning if it changes.

Convert the UTC time to TAI by adding the .

Calculate the time (in the TAI clock) elapsed between Tsrc and Tdst. Call this ΔT.

∀ vCPU:

Calculate this vCPU’s intended TSC value at time Tdst:

Given this vCPU’s TSC frequency, calculate the number of TSC ticks correponding to ΔT.

Add this to the vCPU TSC value calculated on the source

Read the scaling information on the current host with the attribute

Calculate this vCPU’s scaled TSC value corresponding to the host TSC at time Tdst without taking

offsetting into account.

Set to the delta between that and the intended TSC value.

Use to set the KVM clock (on vCPU0).

