On Wed, Jun 22, 2022 at 12:27 PM Paolo Bonzini <pbonzini@xxxxxxxxxx> wrote: > > From: David Matlack <dmatlack@xxxxxxxxxx> > > Add support for Eager Page Splitting pages that are mapped by nested > MMUs. Walk through the rmap first splitting all 1GiB pages to 2MiB > pages, and then splitting all 2MiB pages to 4KiB pages. > > Note, Eager Page Splitting is limited to nested MMUs as a policy rather > than due to any technical reason (the sp->role.guest_mode check could > just be deleted and Eager Page Splitting would work correctly for all > shadow MMU pages). There is really no reason to support Eager Page > Splitting for tdp_mmu=N, since such support will eventually be phased > out, and there is no current use case supporting Eager Page Splitting on > hosts where TDP is either disabled or unavailable in hardware. > Furthermore, future improvements to nested MMU scalability may diverge > the code from the legacy shadow paging implementation. These > improvements will be simpler to make if Eager Page Splitting does not > have to worry about legacy shadow paging. > > Splitting huge pages mapped by nested MMUs requires dealing with some > extra complexity beyond that of the TDP MMU: > > (1) The shadow MMU has a limit on the number of shadow pages that are > allowed to be allocated. So, as a policy, Eager Page Splitting > refuses to split if there are KVM_MIN_FREE_MMU_PAGES or fewer > pages available. > > (2) Splitting a huge page may end up re-using an existing lower level > shadow page tables. This is unlike the TDP MMU which always allocates > new shadow page tables when splitting. > > (3) When installing the lower level SPTEs, they must be added to the > rmap which may require allocating additional pte_list_desc structs. > > Case (2) is especially interesting since it may require a TLB flush, > unlike the TDP MMU which can fully split huge pages without any TLB > flushes. Specifically, an existing lower level page table may point to > even lower level page tables that are not fully populated, effectively > unmapping a portion of the huge page, which requires a flush. As of > this commit, a flush is always done always after dropping the huge page > and before installing the lower level page table. > > This TLB flush could instead be delayed until the MMU lock is about to be > dropped, which would batch flushes for multiple splits. However these > flushes should be rare in practice (a huge page must be aliased in > multiple SPTEs and have been split for NX Huge Pages in only some of > them). Flushing immediately is simpler to plumb and also reduces the > chances of tripping over a CPU bug (e.g. see iTLB multihit). > > Suggested-by: Peter Feiner <pfeiner@xxxxxxxxxx> > [ This commit is based off of the original implementation of Eager Page > Splitting from Peter in Google's kernel from 2016. ] > Signed-off-by: David Matlack <dmatlack@xxxxxxxxxx> > Message-Id: <20220516232138.1783324-23-dmatlack@xxxxxxxxxx> > Signed-off-by: Paolo Bonzini <pbonzini@xxxxxxxxxx> > --- > .../admin-guide/kernel-parameters.txt | 3 +- > arch/x86/include/asm/kvm_host.h | 22 ++ > arch/x86/kvm/mmu/mmu.c | 261 +++++++++++++++++- > 3 files changed, 277 insertions(+), 9 deletions(-) > > diff --git a/Documentation/admin-guide/kernel-parameters.txt b/Documentation/admin-guide/kernel-parameters.txt > index 97c16aa2f53f..329f0f274e2b 100644 > --- a/Documentation/admin-guide/kernel-parameters.txt > +++ b/Documentation/admin-guide/kernel-parameters.txt > @@ -2418,8 +2418,7 @@ > the KVM_CLEAR_DIRTY ioctl, and only for the pages being > cleared. > > - Eager page splitting currently only supports splitting > - huge pages mapped by the TDP MMU. > + Eager page splitting is only supported when kvm.tdp_mmu=Y. > > Default is Y (on). > > diff --git a/arch/x86/include/asm/kvm_host.h b/arch/x86/include/asm/kvm_host.h > index 64efe8c90c31..665667d61caf 100644 > --- a/arch/x86/include/asm/kvm_host.h > +++ b/arch/x86/include/asm/kvm_host.h > @@ -1338,6 +1338,28 @@ struct kvm_arch { > u32 max_vcpu_ids; > > bool disable_nx_huge_pages; > + > + /* > + * Memory caches used to allocate shadow pages when performing eager > + * page splitting. No need for a shadowed_info_cache since eager page > + * splitting only allocates direct shadow pages. > + * > + * Protected by kvm->slots_lock. > + */ > + struct kvm_mmu_memory_cache split_shadow_page_cache; > + struct kvm_mmu_memory_cache split_page_header_cache; > + > + /* > + * Memory cache used to allocate pte_list_desc structs while splitting > + * huge pages. In the worst case, to split one huge page, 512 > + * pte_list_desc structs are needed to add each lower level leaf sptep > + * to the rmap plus 1 to extend the parent_ptes rmap of the lower level > + * page table. > + * > + * Protected by kvm->slots_lock. > + */ > +#define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1) > + struct kvm_mmu_memory_cache split_desc_cache; > }; > > struct kvm_vm_stat { > diff --git a/arch/x86/kvm/mmu/mmu.c b/arch/x86/kvm/mmu/mmu.c > index bf1ae5ebf41b..22681931921f 100644 > --- a/arch/x86/kvm/mmu/mmu.c > +++ b/arch/x86/kvm/mmu/mmu.c > @@ -5942,9 +5942,25 @@ int kvm_mmu_init_vm(struct kvm *kvm) > node->track_write = kvm_mmu_pte_write; > node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot; > kvm_page_track_register_notifier(kvm, node); > + > + kvm->arch.split_page_header_cache.kmem_cache = mmu_page_header_cache; > + kvm->arch.split_page_header_cache.gfp_zero = __GFP_ZERO; > + > + kvm->arch.split_shadow_page_cache.gfp_zero = __GFP_ZERO; > + > + kvm->arch.split_desc_cache.kmem_cache = pte_list_desc_cache; > + kvm->arch.split_desc_cache.gfp_zero = __GFP_ZERO; > + > return 0; > } > > +static void mmu_free_vm_memory_caches(struct kvm *kvm) > +{ > + kvm_mmu_free_memory_cache(&kvm->arch.split_desc_cache); > + kvm_mmu_free_memory_cache(&kvm->arch.split_page_header_cache); > + kvm_mmu_free_memory_cache(&kvm->arch.split_shadow_page_cache); > +} > + > void kvm_mmu_uninit_vm(struct kvm *kvm) > { > struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; > @@ -5952,6 +5968,8 @@ void kvm_mmu_uninit_vm(struct kvm *kvm) > kvm_page_track_unregister_notifier(kvm, node); > > kvm_mmu_uninit_tdp_mmu(kvm); > + > + mmu_free_vm_memory_caches(kvm); > } > > static bool __kvm_zap_rmaps(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) > @@ -6073,15 +6091,237 @@ void kvm_mmu_slot_remove_write_access(struct kvm *kvm, > kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); > } > > +static inline bool need_topup(struct kvm_mmu_memory_cache *cache, int min) > +{ > + return kvm_mmu_memory_cache_nr_free_objects(cache) < min; > +} > + > +static bool need_topup_split_caches_or_resched(struct kvm *kvm) > +{ > + if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) > + return true; > + > + /* > + * In the worst case, SPLIT_DESC_CACHE_MIN_NR_OBJECTS descriptors are needed > + * to split a single huge page. Calculating how many are actually needed > + * is possible but not worth the complexity. > + */ > + return need_topup(&kvm->arch.split_desc_cache, SPLIT_DESC_CACHE_MIN_NR_OBJECTS) || > + need_topup(&kvm->arch.split_page_header_cache, 1) || > + need_topup(&kvm->arch.split_shadow_page_cache, 1); > +} > + > +static int topup_split_caches(struct kvm *kvm) > +{ > + int r; > + > + lockdep_assert_held(&kvm->slots_lock); > + > + /* > + * It's common to need all SPLIT_DESC_CACHE_MIN_NR_OBJECTS (513) objects > + * when splitting a page, but setting capacity == min would cause > + * KVM to drop mmu_lock even if just one object was consumed from the > + * cache. So make capacity larger than min and handle two huge pages > + * without having to drop the lock. I was going to do some testing this week to confirm, but IIUC KVM will only allocate from split_desc_cache if the L1 hypervisor has aliased a huge page in multiple {E,N}PT12 page table entries. i.e. L1 is mapping a huge page into an L2 multiple times, or mapped into multiple L2s. This should be common in traditional, process-level, shadow paging, but I think will be quite rare for nested shadow paging. I don't have any objection to using 2x for capacity but I would recommend dropping the "It's common part ...," part from the comment. > + */ > + r = __kvm_mmu_topup_memory_cache(&kvm->arch.split_desc_cache, > + 2 * SPLIT_DESC_CACHE_MIN_NR_OBJECTS, > + SPLIT_DESC_CACHE_MIN_NR_OBJECTS); > + if (r) > + return r; > + > + r = kvm_mmu_topup_memory_cache(&kvm->arch.split_page_header_cache, 1); > + if (r) > + return r; > + > + return kvm_mmu_topup_memory_cache(&kvm->arch.split_shadow_page_cache, 1); > +} > + > +static struct kvm_mmu_page *shadow_mmu_get_sp_for_split(struct kvm *kvm, u64 *huge_sptep) > +{ > + struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep); > + struct shadow_page_caches caches = {}; > + union kvm_mmu_page_role role; > + unsigned int access; > + gfn_t gfn; > + > + gfn = kvm_mmu_page_get_gfn(huge_sp, huge_sptep - huge_sp->spt); > + access = kvm_mmu_page_get_access(huge_sp, huge_sptep - huge_sp->spt); > + > + /* > + * Note, huge page splitting always uses direct shadow pages, regardless > + * of whether the huge page itself is mapped by a direct or indirect > + * shadow page, since the huge page region itself is being directly > + * mapped with smaller pages. > + */ > + role = kvm_mmu_child_role(huge_sptep, /*direct=*/true, access); > + > + /* Direct SPs do not require a shadowed_info_cache. */ > + caches.page_header_cache = &kvm->arch.split_page_header_cache; > + caches.shadow_page_cache = &kvm->arch.split_shadow_page_cache; > + > + /* Safe to pass NULL for vCPU since requesting a direct SP. */ > + return __kvm_mmu_get_shadow_page(kvm, NULL, &caches, gfn, role); > +} > + > +static void shadow_mmu_split_huge_page(struct kvm *kvm, > + const struct kvm_memory_slot *slot, > + u64 *huge_sptep) > + > +{ > + struct kvm_mmu_memory_cache *cache = &kvm->arch.split_desc_cache; > + u64 huge_spte = READ_ONCE(*huge_sptep); > + struct kvm_mmu_page *sp; > + u64 *sptep, spte; > + gfn_t gfn; > + int index; > + > + sp = shadow_mmu_get_sp_for_split(kvm, huge_sptep); > + > + for (index = 0; index < SPTE_ENT_PER_PAGE; index++) { > + sptep = &sp->spt[index]; > + gfn = kvm_mmu_page_get_gfn(sp, index); > + > + /* > + * The SP may already have populated SPTEs, e.g. if this huge > + * page is aliased by multiple sptes with the same access > + * permissions. These entries are guaranteed to map the same > + * gfn-to-pfn translation since the SP is direct, so no need to > + * modify them. > + * > + * If a given SPTE points to a lower level page table, installing > + * such SPTEs would effectively unmap a potion of the huge page. > + * This is not an issue because __link_shadow_page() flushes the TLB > + * when the passed sp replaces a large SPTE. > + */ > + if (is_shadow_present_pte(*sptep)) > + continue; > + > + spte = make_huge_page_split_spte(kvm, huge_spte, sp->role, index); > + mmu_spte_set(sptep, spte); > + __rmap_add(kvm, cache, slot, sptep, gfn, sp->role.access); > + } > + > + __link_shadow_page(kvm, cache, huge_sptep, sp); > +} > + > +static int shadow_mmu_try_split_huge_page(struct kvm *kvm, > + const struct kvm_memory_slot *slot, > + u64 *huge_sptep) > +{ > + struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep); > + int level, r = 0; > + gfn_t gfn; > + u64 spte; > + > + /* Grab information for the tracepoint before dropping the MMU lock. */ > + gfn = kvm_mmu_page_get_gfn(huge_sp, huge_sptep - huge_sp->spt); > + level = huge_sp->role.level; > + spte = *huge_sptep; > + > + if (kvm_mmu_available_pages(kvm) <= KVM_MIN_FREE_MMU_PAGES) { > + r = -ENOSPC; > + goto out; > + } > + > + if (need_topup_split_caches_or_resched(kvm)) { > + write_unlock(&kvm->mmu_lock); > + cond_resched(); > + /* > + * If the topup succeeds, return -EAGAIN to indicate that the > + * rmap iterator should be restarted because the MMU lock was > + * dropped. > + */ > + r = topup_split_caches(kvm) ?: -EAGAIN; > + write_lock(&kvm->mmu_lock); > + goto out; > + } > + > + shadow_mmu_split_huge_page(kvm, slot, huge_sptep); > + > +out: > + trace_kvm_mmu_split_huge_page(gfn, spte, level, r); > + return r; > +} > + > +static bool shadow_mmu_try_split_huge_pages(struct kvm *kvm, > + struct kvm_rmap_head *rmap_head, > + const struct kvm_memory_slot *slot) > +{ > + struct rmap_iterator iter; > + struct kvm_mmu_page *sp; > + u64 *huge_sptep; > + int r; > + > +restart: > + for_each_rmap_spte(rmap_head, &iter, huge_sptep) { > + sp = sptep_to_sp(huge_sptep); > + > + /* TDP MMU is enabled, so rmap only contains nested MMU SPs. */ > + if (WARN_ON_ONCE(!sp->role.guest_mode)) > + continue; > + > + /* The rmaps should never contain non-leaf SPTEs. */ > + if (WARN_ON_ONCE(!is_large_pte(*huge_sptep))) > + continue; > + > + /* SPs with level >PG_LEVEL_4K should never by unsync. */ > + if (WARN_ON_ONCE(sp->unsync)) > + continue; > + > + /* Don't bother splitting huge pages on invalid SPs. */ > + if (sp->role.invalid) > + continue; > + > + r = shadow_mmu_try_split_huge_page(kvm, slot, huge_sptep); > + > + /* > + * The split succeeded or needs to be retried because the MMU > + * lock was dropped. Either way, restart the iterator to get it > + * back into a consistent state. > + */ > + if (!r || r == -EAGAIN) > + goto restart; > + > + /* The split failed and shouldn't be retried (e.g. -ENOMEM). */ > + break; > + } > + > + return false; > +} > + > +static void kvm_shadow_mmu_try_split_huge_pages(struct kvm *kvm, > + const struct kvm_memory_slot *slot, > + gfn_t start, gfn_t end, > + int target_level) > +{ > + int level; > + > + /* > + * Split huge pages starting with KVM_MAX_HUGEPAGE_LEVEL and working > + * down to the target level. This ensures pages are recursively split > + * all the way to the target level. There's no need to split pages > + * already at the target level. > + */ > + for (level = KVM_MAX_HUGEPAGE_LEVEL; level > target_level; level--) { > + slot_handle_level_range(kvm, slot, shadow_mmu_try_split_huge_pages, > + level, level, start, end - 1, true, false); > + } > +} > + > /* Must be called with the mmu_lock held in write-mode. */ > void kvm_mmu_try_split_huge_pages(struct kvm *kvm, > const struct kvm_memory_slot *memslot, > u64 start, u64 end, > int target_level) > { > - if (is_tdp_mmu_enabled(kvm)) > - kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, > - target_level, false); > + if (!is_tdp_mmu_enabled(kvm)) > + return; > + > + if (kvm_memslots_have_rmaps(kvm)) > + kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level); > + > + kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, false); > > /* > * A TLB flush is unnecessary at this point for the same resons as in > @@ -6096,12 +6336,19 @@ void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm, > u64 start = memslot->base_gfn; > u64 end = start + memslot->npages; > > - if (is_tdp_mmu_enabled(kvm)) { > - read_lock(&kvm->mmu_lock); > - kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true); > - read_unlock(&kvm->mmu_lock); > + if (!is_tdp_mmu_enabled(kvm)) > + return; > + > + if (kvm_memslots_have_rmaps(kvm)) { > + write_lock(&kvm->mmu_lock); > + kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level); > + write_unlock(&kvm->mmu_lock); > } > > + read_lock(&kvm->mmu_lock); > + kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true); > + read_unlock(&kvm->mmu_lock); > + > /* > * No TLB flush is necessary here. KVM will flush TLBs after > * write-protecting and/or clearing dirty on the newly split SPTEs to > -- > 2.31.1 > > _______________________________________________ kvmarm mailing list kvmarm@xxxxxxxxxxxxxxxxxxxxx https://lists.cs.columbia.edu/mailman/listinfo/kvmarm