The TLB flush before installing the newly-populated lower level page table is unnecessary if the lower-level page table maps the huge page identically. KVM knows it is if it did not reuse an existing shadow page table, tell drop_large_spte() to skip the flush in that case. Extracted from a patch by David Matlack. Signed-off-by: Paolo Bonzini <pbonzini@xxxxxxxxxx> --- arch/x86/kvm/mmu/mmu.c | 32 ++++++++++++++++++++------------ 1 file changed, 20 insertions(+), 12 deletions(-) diff --git a/arch/x86/kvm/mmu/mmu.c b/arch/x86/kvm/mmu/mmu.c index 22681931921f..79c6a821ea0d 100644 --- a/arch/x86/kvm/mmu/mmu.c +++ b/arch/x86/kvm/mmu/mmu.c @@ -1135,7 +1135,7 @@ static void drop_spte(struct kvm *kvm, u64 *sptep) rmap_remove(kvm, sptep); } -static void drop_large_spte(struct kvm *kvm, u64 *sptep) +static void drop_large_spte(struct kvm *kvm, u64 *sptep, bool flush) { struct kvm_mmu_page *sp; @@ -1143,7 +1143,9 @@ static void drop_large_spte(struct kvm *kvm, u64 *sptep) WARN_ON(sp->role.level == PG_LEVEL_4K); drop_spte(kvm, sptep); - kvm_flush_remote_tlbs_with_address(kvm, sp->gfn, + + if (flush) + kvm_flush_remote_tlbs_with_address(kvm, sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level)); } @@ -2283,7 +2285,7 @@ static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) static void __link_shadow_page(struct kvm *kvm, struct kvm_mmu_memory_cache *cache, u64 *sptep, - struct kvm_mmu_page *sp) + struct kvm_mmu_page *sp, bool flush) { u64 spte; @@ -2291,10 +2293,11 @@ static void __link_shadow_page(struct kvm *kvm, /* * If an SPTE is present already, it must be a leaf and therefore - * a large one. Drop it and flush the TLB before installing sp. + * a large one. Drop it, and flush the TLB if needed, before + * installing sp. */ if (is_shadow_present_pte(*sptep)) - drop_large_spte(kvm, sptep); + drop_large_spte(kvm, sptep, flush); spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp)); @@ -2309,7 +2312,7 @@ static void __link_shadow_page(struct kvm *kvm, static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, struct kvm_mmu_page *sp) { - __link_shadow_page(vcpu->kvm, &vcpu->arch.mmu_pte_list_desc_cache, sptep, sp); + __link_shadow_page(vcpu->kvm, &vcpu->arch.mmu_pte_list_desc_cache, sptep, sp, true); } static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, @@ -6172,6 +6175,7 @@ static void shadow_mmu_split_huge_page(struct kvm *kvm, struct kvm_mmu_memory_cache *cache = &kvm->arch.split_desc_cache; u64 huge_spte = READ_ONCE(*huge_sptep); struct kvm_mmu_page *sp; + bool flush = false; u64 *sptep, spte; gfn_t gfn; int index; @@ -6189,20 +6193,24 @@ static void shadow_mmu_split_huge_page(struct kvm *kvm, * gfn-to-pfn translation since the SP is direct, so no need to * modify them. * - * If a given SPTE points to a lower level page table, installing - * such SPTEs would effectively unmap a potion of the huge page. - * This is not an issue because __link_shadow_page() flushes the TLB - * when the passed sp replaces a large SPTE. + * However, if a given SPTE points to a lower level page table, + * that lower level page table may only be partially populated. + * Installing such SPTEs would effectively unmap a potion of the + * huge page. Unmapping guest memory always requires a TLB flush + * since a subsequent operation on the unmapped regions would + * fail to detect the need to flush. */ - if (is_shadow_present_pte(*sptep)) + if (is_shadow_present_pte(*sptep)) { + flush |= !is_last_spte(*sptep, sp->role.level); continue; + } spte = make_huge_page_split_spte(kvm, huge_spte, sp->role, index); mmu_spte_set(sptep, spte); __rmap_add(kvm, cache, slot, sptep, gfn, sp->role.access); } - __link_shadow_page(kvm, cache, huge_sptep, sp); + __link_shadow_page(kvm, cache, huge_sptep, sp, flush); } static int shadow_mmu_try_split_huge_page(struct kvm *kvm, -- 2.31.1 _______________________________________________ kvmarm mailing list kvmarm@xxxxxxxxxxxxxxxxxxxxx https://lists.cs.columbia.edu/mailman/listinfo/kvmarm