Re: [RFC PATCH 0/3] ARM64: Guest performance improvement during dirty

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



On Tue, Jan 11, 2022 at 3:55 AM Marc Zyngier <maz@xxxxxxxxxx> wrote:
>
> On Mon, 10 Jan 2022 21:04:38 +0000,
> Jing Zhang <jingzhangos@xxxxxxxxxx> wrote:
> >
> > This patch is to reduce the performance degradation of guest workload during
> > dirty logging on ARM64. A fast path is added to handle permission relaxation
> > during dirty logging. The MMU lock is replaced with rwlock, by which all
> > permision relaxations on leaf pte can be performed under the read lock. This
> > greatly reduces the MMU lock contention during dirty logging. With this
> > solution, the source guest workload performance degradation can be improved
> > by more than 60%.
> >
> > Problem:
> >   * A Google internal live migration test shows that the source guest workload
> >   performance has >99% degradation for about 105 seconds, >50% degradation
> >   for about 112 seconds, >10% degradation for about 112 seconds on ARM64.
> >   This shows that most of the time, the guest workload degradtion is above
> >   99%, which obviously needs some improvement compared to the test result
> >   on x86 (>99% for 6s, >50% for 9s, >10% for 27s).
> >   * Tested H/W: Ampere Altra 3GHz, #CPU: 64, #Mem: 256GB
> >   * VM spec: #vCPU: 48, #Mem/vCPU: 4GB
>
> What are the host and guest page sizes?
Both are 4K and guest mem is 2M hugepage backed. Will add the info for
future posts.
>
> >
> > Analysis:
> >   * We enabled CONFIG_LOCK_STAT in kernel and used dirty_log_perf_test to get
> >     the number of contentions of MMU lock and the "dirty memory time" on
> >     various VM spec.
> >     By using test command
> >     ./dirty_log_perf_test -b 2G -m 2 -i 2 -s anonymous_hugetlb_2mb -v [#vCPU]
>
> How is this test representative of the internal live migration test
> you mention above? '-m 2' indicates a mode that varies depending on
> the HW and revision of the test (I just added a bunch of supported
> modes). Which one is it?
The "dirty memory time" is the time vCPU threads spent in KVM after
fault. Higher "dirty memory time" means higher degradation to guest
workload.
'-m 2' indicates mode "PA-bits:48,  VA-bits:48,  4K pages". Will add
this for future posts.
>
> >     Below are the results:
> >     +-------+------------------------+-----------------------+
> >     | #vCPU | dirty memory time (ms) | number of contentions |
> >     +-------+------------------------+-----------------------+
> >     | 1     | 926                    | 0                     |
> >     +-------+------------------------+-----------------------+
> >     | 2     | 1189                   | 4732558               |
> >     +-------+------------------------+-----------------------+
> >     | 4     | 2503                   | 11527185              |
> >     +-------+------------------------+-----------------------+
> >     | 8     | 5069                   | 24881677              |
> >     +-------+------------------------+-----------------------+
> >     | 16    | 10340                  | 50347956              |
> >     +-------+------------------------+-----------------------+
> >     | 32    | 20351                  | 100605720             |
> >     +-------+------------------------+-----------------------+
> >     | 64    | 40994                  | 201442478             |
> >     +-------+------------------------+-----------------------+
> >
> >   * From the test results above, the "dirty memory time" and the number of
> >     MMU lock contention scale with the number of vCPUs. That means all the
> >     dirty memory operations from all vCPU threads have been serialized by
> >     the MMU lock. Further analysis also shows that the permission relaxation
> >     during dirty logging is where vCPU threads get serialized.
> >
> > Solution:
> >   * On ARM64, there is no mechanism as PML (Page Modification Logging) and
> >     the dirty-bit solution for dirty logging is much complicated compared to
> >     the write-protection solution. The straight way to reduce the guest
> >     performance degradation is to enhance the concurrency for the permission
> >     fault path during dirty logging.
> >   * In this patch, we only put leaf PTE permission relaxation for dirty
> >     logging under read lock, all others would go under write lock.
> >     Below are the results based on the solution:
> >     +-------+------------------------+
> >     | #vCPU | dirty memory time (ms) |
> >     +-------+------------------------+
> >     | 1     | 803                    |
> >     +-------+------------------------+
> >     | 2     | 843                    |
> >     +-------+------------------------+
> >     | 4     | 942                    |
> >     +-------+------------------------+
> >     | 8     | 1458                   |
> >     +-------+------------------------+
> >     | 16    | 2853                   |
> >     +-------+------------------------+
> >     | 32    | 5886                   |
> >     +-------+------------------------+
> >     | 64    | 12190                  |
> >     +-------+------------------------+
> >     All "dirty memory time" have been reduced by more than 60% when the
> >     number of vCPU grows.
>
> How does that translate to the original problem statement with your
> live migration test?
Based on the solution, the test results from the Google internal live
migration test also shows more than 60% improvement with >99% for 30s,
>50% for 58s and >10% for 76s.
Will add this info in to future posts.
>
> Thanks,
>
>         M.
>
> --
> Without deviation from the norm, progress is not possible.

Thanks,
Jing
_______________________________________________
kvmarm mailing list
kvmarm@xxxxxxxxxxxxxxxxxxxxx
https://lists.cs.columbia.edu/mailman/listinfo/kvmarm



[Index of Archives]     [Linux KVM]     [Spice Development]     [Libvirt]     [Libvirt Users]     [Linux USB Devel]     [Linux Audio Users]     [Yosemite News]     [Linux Kernel]     [Linux SCSI]

  Powered by Linux