Hi Will, On 8/25/20 10:39 AM, Will Deacon wrote: > Add stage-2 map() and unmap() operations to the generic page-table code. > > Cc: Marc Zyngier <maz@xxxxxxxxxx> > Cc: Quentin Perret <qperret@xxxxxxxxxx> > Signed-off-by: Will Deacon <will@xxxxxxxxxx> > --- > arch/arm64/include/asm/kvm_pgtable.h | 39 ++++ > arch/arm64/kvm/hyp/pgtable.c | 262 +++++++++++++++++++++++++++ > 2 files changed, 301 insertions(+) > > diff --git a/arch/arm64/include/asm/kvm_pgtable.h b/arch/arm64/include/asm/kvm_pgtable.h > index 3389f978d573..8ab0d5f43817 100644 > --- a/arch/arm64/include/asm/kvm_pgtable.h > +++ b/arch/arm64/include/asm/kvm_pgtable.h > @@ -134,6 +134,45 @@ int kvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm *kvm); > */ > void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt); > > +/** > + * kvm_pgtable_stage2_map() - Install a mapping in a guest stage-2 page-table. > + * @pgt: Page-table structure initialised by kvm_pgtable_stage2_init(). > + * @addr: Intermediate physical address at which to place the mapping. > + * @size: Size of the mapping. > + * @phys: Physical address of the memory to map. > + * @prot: Permissions and attributes for the mapping. > + * @mc: Cache of pre-allocated GFP_PGTABLE_USER memory from which to > + * allocate page-table pages. > + * > + * If device attributes are not explicitly requested in @prot, then the > + * mapping will be normal, cacheable. > + * > + * Note that this function will both coalesce existing table entries and split > + * existing block mappings, relying on page-faults to fault back areas outside > + * of the new mapping lazily. > + * > + * Return: 0 on success, negative error code on failure. > + */ > +int kvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size, > + u64 phys, enum kvm_pgtable_prot prot, > + struct kvm_mmu_memory_cache *mc); > + > +/** > + * kvm_pgtable_stage2_unmap() - Remove a mapping from a guest stage-2 page-table. > + * @pgt: Page-table structure initialised by kvm_pgtable_stage2_init(). > + * @addr: Intermediate physical address from which to remove the mapping. > + * @size: Size of the mapping. > + * > + * TLB invalidation is performed for each page-table entry cleared during the > + * unmapping operation and the reference count for the page-table page > + * containing the cleared entry is decremented, with unreferenced pages being > + * freed. Unmapping a cacheable page will ensure that it is clean to the PoC if > + * FWB is not supported by the CPU. > + * > + * Return: 0 on success, negative error code on failure. > + */ > +int kvm_pgtable_stage2_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size); > + > /** > * kvm_pgtable_walk() - Walk a page-table. > * @pgt: Page-table structure initialised by kvm_pgtable_*_init(). > diff --git a/arch/arm64/kvm/hyp/pgtable.c b/arch/arm64/kvm/hyp/pgtable.c > index b8550ccaef4d..41ee8f3c0369 100644 > --- a/arch/arm64/kvm/hyp/pgtable.c > +++ b/arch/arm64/kvm/hyp/pgtable.c > @@ -32,10 +32,19 @@ > #define KVM_PTE_LEAF_ATTR_LO_S1_SH_IS 3 > #define KVM_PTE_LEAF_ATTR_LO_S1_AF BIT(10) > > +#define KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR GENMASK(5, 2) > +#define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R BIT(6) > +#define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W BIT(7) > +#define KVM_PTE_LEAF_ATTR_LO_S2_SH GENMASK(9, 8) > +#define KVM_PTE_LEAF_ATTR_LO_S2_SH_IS 3 > +#define KVM_PTE_LEAF_ATTR_LO_S2_AF BIT(10) > + > #define KVM_PTE_LEAF_ATTR_HI GENMASK(63, 51) > > #define KVM_PTE_LEAF_ATTR_HI_S1_XN BIT(54) > > +#define KVM_PTE_LEAF_ATTR_HI_S2_XN BIT(54) Checked the bitfields against ARM DDI 0487F.b, they match. > + > struct kvm_pgtable_walk_data { > struct kvm_pgtable *pgt; > struct kvm_pgtable_walker *walker; > @@ -420,6 +429,259 @@ void kvm_pgtable_hyp_destroy(struct kvm_pgtable *pgt) > pgt->pgd = NULL; > } > > +struct stage2_map_data { > + u64 phys; > + kvm_pte_t attr; > + > + kvm_pte_t *anchor; > + > + struct kvm_s2_mmu *mmu; > + struct kvm_mmu_memory_cache *memcache; > +}; > + > +static kvm_pte_t *stage2_memcache_alloc_page(struct stage2_map_data *data) > +{ > + kvm_pte_t *ptep = NULL; > + struct kvm_mmu_memory_cache *mc = data->memcache; > + > + /* Allocated with GFP_PGTABLE_USER, so no need to zero */ > + if (mc && mc->nobjs) > + ptep = mc->objects[--mc->nobjs]; > + > + return ptep; > +} > + > +static int stage2_map_set_prot_attr(enum kvm_pgtable_prot prot, > + struct stage2_map_data *data) > +{ > + bool device = prot & KVM_PGTABLE_PROT_DEVICE; > + kvm_pte_t attr = device ? PAGE_S2_MEMATTR(DEVICE_nGnRE) : > + PAGE_S2_MEMATTR(NORMAL); > + u32 sh = KVM_PTE_LEAF_ATTR_LO_S2_SH_IS; > + > + if (!(prot & KVM_PGTABLE_PROT_X)) > + attr |= KVM_PTE_LEAF_ATTR_HI_S2_XN; > + else if (device) > + return -EINVAL; > + > + if (prot & KVM_PGTABLE_PROT_R) > + attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R; > + > + if (prot & KVM_PGTABLE_PROT_W) > + attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W; > + > + attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S2_SH, sh); > + attr |= KVM_PTE_LEAF_ATTR_LO_S2_AF; > + data->attr = attr; > + return 0; > +} > + > +static bool stage2_map_walker_try_leaf(u64 addr, u64 end, u32 level, > + kvm_pte_t *ptep, > + struct stage2_map_data *data) > +{ > + u64 granule = kvm_granule_size(level), phys = data->phys; > + > + if (!kvm_block_mapping_supported(addr, end, phys, level)) > + return false; > + > + if (kvm_set_valid_leaf_pte(ptep, phys, data->attr, level)) > + goto out; > + > + kvm_set_invalid_pte(ptep); > + kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, data->mmu, addr, level); > + kvm_set_valid_leaf_pte(ptep, phys, data->attr, level); One has to read the kvm_set_valid_leaf_pte code very carefully to understand why we're doing the above (found an old, valid entry in the stage 2 code, the page tables are in use so we're doing break-before-make to replace it with the new one), especially since we don't this with the hyp tables. Perhaps a comment explaining what's happening would be useful. > +out: > + data->phys += granule; > + return true; > +} > + > +static int stage2_map_walk_table_pre(u64 addr, u64 end, u32 level, > + kvm_pte_t *ptep, > + struct stage2_map_data *data) > +{ > + if (data->anchor) > + return 0; > + > + if (!kvm_block_mapping_supported(addr, end, data->phys, level)) > + return 0; > + > + kvm_set_invalid_pte(ptep); > + kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, data->mmu, addr, 0); > + data->anchor = ptep; > + return 0; > +} > + > +static int stage2_map_walk_leaf(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, > + struct stage2_map_data *data) > +{ > + kvm_pte_t *childp, pte = *ptep; > + struct page *page = virt_to_page(ptep); > + > + if (data->anchor) { > + if (kvm_pte_valid(pte)) > + put_page(page); > + > + return 0; > + } > + > + if (stage2_map_walker_try_leaf(addr, end, level, ptep, data)) > + goto out_get_page; > + > + if (WARN_ON(level == KVM_PGTABLE_MAX_LEVELS - 1)) > + return -EINVAL; > + > + childp = stage2_memcache_alloc_page(data); > + if (!childp) > + return -ENOMEM; > + > + /* > + * If we've run into an existing block mapping then replace it with > + * a table. Accesses beyond 'end' that fall within the new table > + * will be mapped lazily. > + */ > + if (kvm_pte_valid(pte)) { > + kvm_set_invalid_pte(ptep); > + kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, data->mmu, addr, level); > + put_page(page); > + } > + > + kvm_set_table_pte(ptep, childp); > + > +out_get_page: > + get_page(page); > + return 0; > +} > + > +static int stage2_map_walk_table_post(u64 addr, u64 end, u32 level, > + kvm_pte_t *ptep, > + struct stage2_map_data *data) > +{ > + int ret = 0; > + > + if (!data->anchor) > + return 0; > + > + free_page((unsigned long)kvm_pte_follow(*ptep)); > + put_page(virt_to_page(ptep)); > + > + if (data->anchor == ptep) { > + data->anchor = NULL; > + ret = stage2_map_walk_leaf(addr, end, level, ptep, data); > + } > + > + return ret; > +} > + > +static int stage2_map_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, > + enum kvm_pgtable_walk_flags flag, void * const arg) > +{ > + struct stage2_map_data *data = arg; > + > + switch (flag) { > + case KVM_PGTABLE_WALK_TABLE_PRE: > + return stage2_map_walk_table_pre(addr, end, level, ptep, data); > + case KVM_PGTABLE_WALK_LEAF: > + return stage2_map_walk_leaf(addr, end, level, ptep, data); > + case KVM_PGTABLE_WALK_TABLE_POST: > + return stage2_map_walk_table_post(addr, end, level, ptep, data); > + } > + > + return -EINVAL; > +} As I understood the algorithm, each of the pre, leaf and post function do two different things: 1. free/invalidate the tables/leaf entries if we can create a block mapping at a previously visited level (stage2_map_data->anchor != NULL); and create an entry for the range at the correct level. To be honest, to me this hasn't been obvious from the code and I think some comments to the functions and especially to the anchor field of stage2_map_data would go a long way to making it easier for others to understand the code. With that in mind, the functions look solid to me: every get_page has a corresponding put_page in stage2_map_walk_leaf or in the unmap walker, and the algorithm looks sound. I still want to re-read the functions a few times (probably in the next iteration) because they're definitely not trivial and I don't want to miss something. One nitpick below. > + > +int kvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size, > + u64 phys, enum kvm_pgtable_prot prot, > + struct kvm_mmu_memory_cache *mc) > +{ > + int ret; > + struct stage2_map_data map_data = { > + .phys = ALIGN_DOWN(phys, PAGE_SIZE), > + .mmu = pgt->mmu, > + .memcache = mc, > + }; > + struct kvm_pgtable_walker walker = { > + .cb = stage2_map_walker, > + .flags = KVM_PGTABLE_WALK_TABLE_PRE | > + KVM_PGTABLE_WALK_LEAF | > + KVM_PGTABLE_WALK_TABLE_POST, > + .arg = &map_data, > + }; > + > + ret = stage2_map_set_prot_attr(prot, &map_data); > + if (ret) > + return ret; > + > + ret = kvm_pgtable_walk(pgt, addr, size, &walker); > + dsb(ishst); > + return ret; > +} > + > +static void stage2_flush_dcache(void *addr, u64 size) > +{ > + if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) > + return; > + > + __flush_dcache_area(addr, size); > +} > + > +static bool stage2_pte_cacheable(kvm_pte_t pte) > +{ > + u64 memattr = FIELD_GET(KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR, pte); > + return memattr == PAGE_S2_MEMATTR(NORMAL); > +} > + > +static int stage2_unmap_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, > + enum kvm_pgtable_walk_flags flag, > + void * const arg) > +{ > + struct kvm_s2_mmu *mmu = arg; > + kvm_pte_t pte = *ptep, *childp = NULL; > + bool need_flush = false; > + > + if (!kvm_pte_valid(pte)) > + return 0; > + > + if (kvm_pte_table(pte, level)) { > + childp = kvm_pte_follow(pte); > + > + if (page_count(virt_to_page(childp)) != 1) > + return 0; > + } else if (stage2_pte_cacheable(pte)) { > + need_flush = true; > + } > + > + /* > + * This is similar to the map() path in that we unmap the entire > + * block entry and rely on the remaining portions being faulted > + * back lazily. > + */ > + kvm_set_invalid_pte(ptep); > + kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, addr, level); > + put_page(virt_to_page(ptep)); > + > + if (need_flush) { > + stage2_flush_dcache(kvm_pte_follow(pte), > + kvm_granule_size(level)); > + } The curly braces are unnecessary; I'm only mentioning it because you don't use them in this function for the rest of the one line if statements. Thanks, Alex > + > + if (childp) > + free_page((unsigned long)childp); > + > + return 0; > +} > + > +int kvm_pgtable_stage2_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size) > +{ > + struct kvm_pgtable_walker walker = { > + .cb = stage2_unmap_walker, > + .arg = pgt->mmu, > + .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST, > + }; > + > + return kvm_pgtable_walk(pgt, addr, size, &walker); > +} > + > int kvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm *kvm) > { > size_t pgd_sz; _______________________________________________ kvmarm mailing list kvmarm@xxxxxxxxxxxxxxxxxxxxx https://lists.cs.columbia.edu/mailman/listinfo/kvmarm