Hari Bathini <hbathini@xxxxxxxxxxxxx> writes: > /** > + * get_usable_memory_ranges - Get usable memory ranges. This list includes > + * regions like crashkernel, opal/rtas & tce-table, > + * that kdump kernel could use. > + * @mem_ranges: Range list to add the memory ranges to. > + * > + * Returns 0 on success, negative errno on error. > + */ > +static int get_usable_memory_ranges(struct crash_mem **mem_ranges) > +{ > + int ret; > + > + /* First memory block & crashkernel region */ > + ret = add_mem_range(mem_ranges, 0, crashk_res.end + 1); This is a bit surprising. I guess I don't have a complete big picture of the patch series yet. What prevents the crashkernel from using memory at the [0, _end] range and overwriting the crashed kernel's memory? Shouldn't the above range start at crashk_res.start? > + if (ret) > + goto out; > + > + ret = add_rtas_mem_range(mem_ranges); > + if (ret) > + goto out; > + > + ret = add_opal_mem_range(mem_ranges); > + if (ret) > + goto out; > + > + ret = add_tce_mem_ranges(mem_ranges); > +out: > + if (ret) > + pr_err("Failed to setup usable memory ranges\n"); > + return ret; > +} > + > +/** > * __locate_mem_hole_top_down - Looks top down for a large enough memory hole > * in the memory regions between buf_min & buf_max > * for the buffer. If found, sets kbuf->mem. > @@ -261,6 +305,322 @@ static int locate_mem_hole_bottom_up_ppc64(struct kexec_buf *kbuf, > } > > /** > + * check_realloc_usable_mem - Reallocate buffer if it can't accommodate entries > + * @um_info: Usable memory buffer and ranges info. > + * @cnt: No. of entries to accommodate. > + * > + * Returns 0 on success, negative errno on error. It actually returns the buffer on success, and NULL on error. > + */ > +static uint64_t *check_realloc_usable_mem(struct umem_info *um_info, int cnt) > +{ > + void *tbuf; > + > + if (um_info->size >= > + ((um_info->idx + cnt) * sizeof(*(um_info->buf)))) > + return um_info->buf; > + > + um_info->size += MEM_RANGE_CHUNK_SZ; > + tbuf = krealloc(um_info->buf, um_info->size, GFP_KERNEL); > + if (!tbuf) { > + um_info->size -= MEM_RANGE_CHUNK_SZ; > + return NULL; > + } > + > + memset(tbuf + um_info->idx, 0, MEM_RANGE_CHUNK_SZ); > + return tbuf; > +} <snip> > +/** > + * get_node_path - Get the full path of the given node. > + * @dn: Node. > + * @path: Updated with the full path of the node. > + * > + * Returns nothing. > + */ > +static void get_node_path(struct device_node *dn, char *path) > +{ > + if (!dn) > + return; > + > + get_node_path(dn->parent, path); Is it ok to do recursion in the kernel? In this case I believe it's not problematic since the maximum call depth will be the maximum depth of a device tree node which shouldn't be too much. Also, there are no local variables in this function. But I thought it was worth mentioning. > + sprintf(path, "/%s", dn->full_name); > +} > + > +/** > + * get_node_pathlen - Get the full path length of the given node. > + * @dn: Node. > + * > + * Returns the length of the full path of the node. > + */ > +static int get_node_pathlen(struct device_node *dn) > +{ > + int len = 0; > + > + while (dn) { > + len += strlen(dn->full_name) + 1; > + dn = dn->parent; > + } > + len++; > + > + return len; > +} > + > +/** > + * add_usable_mem_property - Add usable memory property for the given > + * memory node. > + * @fdt: Flattened device tree for the kdump kernel. > + * @dn: Memory node. > + * @um_info: Usable memory buffer and ranges info. > + * > + * Returns 0 on success, negative errno on error. > + */ > +static int add_usable_mem_property(void *fdt, struct device_node *dn, > + struct umem_info *um_info) > +{ > + int n_mem_addr_cells, n_mem_size_cells, node; > + int i, len, ranges, cnt, ret; > + uint64_t base, end, *buf; > + const __be32 *prop; > + char *pathname; > + > + /* Allocate memory for node path */ > + pathname = kzalloc(ALIGN(get_node_pathlen(dn), 8), GFP_KERNEL); > + if (!pathname) > + return -ENOMEM; > + > + /* Get the full path of the memory node */ > + get_node_path(dn, pathname); > + pr_debug("Memory node path: %s\n", pathname); > + > + /* Now that we know the path, find its offset in kdump kernel's fdt */ > + node = fdt_path_offset(fdt, pathname); > + if (node < 0) { > + pr_err("Malformed device tree: error reading %s\n", > + pathname); > + ret = -EINVAL; > + goto out; > + } > + > + /* Get the address & size cells */ > + n_mem_addr_cells = of_n_addr_cells(dn); > + n_mem_size_cells = of_n_size_cells(dn); > + pr_debug("address cells: %d, size cells: %d\n", n_mem_addr_cells, > + n_mem_size_cells); > + > + um_info->idx = 0; > + buf = check_realloc_usable_mem(um_info, 2); > + if (!buf) { > + ret = -ENOMEM; > + goto out; > + } > + > + um_info->buf = buf; > + > + prop = of_get_property(dn, "reg", &len); > + if (!prop || len <= 0) { > + ret = 0; > + goto out; > + } > + > + /* > + * "reg" property represents sequence of (addr,size) duples s/duples/tuples/ ? > + * each representing a memory range. > + */ > + ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); > + > + for (i = 0; i < ranges; i++) { > + base = of_read_number(prop, n_mem_addr_cells); > + prop += n_mem_addr_cells; > + end = base + of_read_number(prop, n_mem_size_cells) - 1; You need to `prop += n_mem_size_cells` here. > + > + ret = add_usable_mem(um_info, base, end, &cnt); > + if (ret) { > + ret = ret; > + goto out; > + } > + } > + > + /* > + * No kdump kernel usable memory found in this memory node. > + * Write (0,0) duple in linux,usable-memory property for s/duple/tuple/ ? > + * this region to be ignored. > + */ > + if (um_info->idx == 0) { > + um_info->buf[0] = 0; > + um_info->buf[1] = 0; > + um_info->idx = 2; > + } > + > + ret = fdt_setprop(fdt, node, "linux,usable-memory", um_info->buf, > + (um_info->idx * sizeof(*(um_info->buf)))); > + > +out: > + kfree(pathname); > + return ret; > +} -- Thiago Jung Bauermann IBM Linux Technology Center _______________________________________________ kexec mailing list kexec@xxxxxxxxxxxxxxxxxxx http://lists.infradead.org/mailman/listinfo/kexec