Re: [PATCH v3 2/3] printk: add lockless ringbuffer

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



On Thu, Jun 18, 2020 at 04:55:18PM +0206, John Ogness wrote:
> Introduce a multi-reader multi-writer lockless ringbuffer for storing
> the kernel log messages. Readers and writers may use their API from
> any context (including scheduler and NMI). This ringbuffer will make
> it possible to decouple printk() callers from any context, locking,
> or console constraints. It also makes it possible for readers to have
> full access to the ringbuffer contents at any time and context (for
> example from any panic situation).
> 
> The printk_ringbuffer is made up of 3 internal ringbuffers:
> 
> desc_ring:
> A ring of descriptors. A descriptor contains all record meta data
> (sequence number, timestamp, loglevel, etc.) as well as internal state
> information about the record and logical positions specifying where in
> the other ringbuffers the text and dictionary strings are located.
> 
> text_data_ring:
> A ring of data blocks. A data block consists of an unsigned long
> integer (ID) that maps to a desc_ring index followed by the text
> string of the record.
> 
> dict_data_ring:
> A ring of data blocks. A data block consists of an unsigned long
> integer (ID) that maps to a desc_ring index followed by the dictionary
> string of the record.
> 
> The internal state information of a descriptor is the key element to
> allow readers and writers to locklessly synchronize access to the data.
> 
> Co-developed-by: Petr Mladek <pmladek@xxxxxxxx>
> Signed-off-by: John Ogness <john.ogness@xxxxxxxxxxxxx>

The orderings match the comments, although a number could (later!)
be weakened to the easier-to-read smp_load_acquire() and/or
smp_store_release().  So, from a memory-ordering perspective:

Reviewed-by: Paul E. McKenney <paulmck@xxxxxxxxxx>

> ---
>  kernel/printk/Makefile            |    1 +
>  kernel/printk/printk_ringbuffer.c | 1674 +++++++++++++++++++++++++++++
>  kernel/printk/printk_ringbuffer.h |  352 ++++++
>  3 files changed, 2027 insertions(+)
>  create mode 100644 kernel/printk/printk_ringbuffer.c
>  create mode 100644 kernel/printk/printk_ringbuffer.h
> 
> diff --git a/kernel/printk/Makefile b/kernel/printk/Makefile
> index 4d052fc6bcde..eee3dc9b60a9 100644
> --- a/kernel/printk/Makefile
> +++ b/kernel/printk/Makefile
> @@ -2,3 +2,4 @@
>  obj-y	= printk.o
>  obj-$(CONFIG_PRINTK)	+= printk_safe.o
>  obj-$(CONFIG_A11Y_BRAILLE_CONSOLE)	+= braille.o
> +obj-$(CONFIG_PRINTK)	+= printk_ringbuffer.o
> diff --git a/kernel/printk/printk_ringbuffer.c b/kernel/printk/printk_ringbuffer.c
> new file mode 100644
> index 000000000000..75d056436cc5
> --- /dev/null
> +++ b/kernel/printk/printk_ringbuffer.c
> @@ -0,0 +1,1674 @@
> +// SPDX-License-Identifier: GPL-2.0
> +
> +#include <linux/kernel.h>
> +#include <linux/irqflags.h>
> +#include <linux/string.h>
> +#include <linux/errno.h>
> +#include <linux/bug.h>
> +#include "printk_ringbuffer.h"
> +
> +/**
> + * DOC: printk_ringbuffer overview
> + *
> + * Data Structure
> + * --------------
> + * The printk_ringbuffer is made up of 3 internal ringbuffers:
> + *
> + *   desc_ring
> + *     A ring of descriptors. A descriptor contains all record meta data
> + *     (sequence number, timestamp, loglevel, etc.) as well as internal state
> + *     information about the record and logical positions specifying where in
> + *     the other ringbuffers the text and dictionary strings are located.
> + *
> + *   text_data_ring
> + *     A ring of data blocks. A data block consists of an unsigned long
> + *     integer (ID) that maps to a desc_ring index followed by the text
> + *     string of the record.
> + *
> + *   dict_data_ring
> + *     A ring of data blocks. A data block consists of an unsigned long
> + *     integer (ID) that maps to a desc_ring index followed by the dictionary
> + *     string of the record.
> + *
> + * The internal state information of a descriptor is the key element to allow
> + * readers and writers to locklessly synchronize access to the data.
> + *
> + * Implementation
> + * --------------
> + *
> + * Descriptor Ring
> + * ~~~~~~~~~~~~~~~
> + * The descriptor ring is an array of descriptors. A descriptor contains all
> + * the meta data of a printk record as well as blk_lpos structs pointing to
> + * associated text and dictionary data blocks (see "Data Rings" below). Each
> + * descriptor is assigned an ID that maps directly to index values of the
> + * descriptor array and has a state. The ID and the state are bitwise combined
> + * into a single descriptor field named @state_var, allowing ID and state to
> + * be synchronously and atomically updated.
> + *
> + * Descriptors have three states:
> + *
> + *   reserved
> + *     A writer is modifying the record.
> + *
> + *   committed
> + *     The record and all its data are complete and available for reading.
> + *
> + *   reusable
> + *     The record exists, but its text and/or dictionary data may no longer
> + *     be available.
> + *
> + * Querying the @state_var of a record requires providing the ID of the
> + * descriptor to query. This can yield a possible fourth (pseudo) state:
> + *
> + *   miss
> + *     The descriptor being queried has an unexpected ID.
> + *
> + * The descriptor ring has a @tail_id that contains the ID of the oldest
> + * descriptor and @head_id that contains the ID of the newest descriptor.
> + *
> + * When a new descriptor should be created (and the ring is full), the tail
> + * descriptor is invalidated by first transitioning to the reusable state and
> + * then invalidating all tail data blocks up to and including the data blocks
> + * associated with the tail descriptor (for text and dictionary rings). Then
> + * @tail_id is advanced, followed by advancing @head_id. And finally the
> + * @state_var of the new descriptor is initialized to the new ID and reserved
> + * state.
> + *
> + * The @tail_id can only be advanced if the the new @tail_id would be in the
> + * committed or reusable queried state. This makes it possible that a valid
> + * sequence number of the tail is always available.
> + *
> + * Data Rings
> + * ~~~~~~~~~~
> + * The two data rings (text and dictionary) function identically. They exist
> + * separately so that their buffer sizes can be individually set and they do
> + * not affect one another.
> + *
> + * Data rings are byte arrays composed of data blocks. Data blocks are
> + * referenced by blk_lpos structs that point to the logical position of the
> + * beginning of a data block and the beginning of the next adjacent data
> + * block. Logical positions are mapped directly to index values of the byte
> + * array ringbuffer.
> + *
> + * Each data block consists of an ID followed by the raw data. The ID is the
> + * identifier of a descriptor that is associated with the data block. A data
> + * block is considered valid if all of the following conditions are met:
> + *
> + *   1) The descriptor associated with the data block is in the committed
> + *      or reusable queried state.
> + *
> + *   2) The blk_lpos struct within the descriptor associated with the data
> + *      block references back to the same data block.
> + *
> + *   3) The data block is within the head/tail logical position range.
> + *
> + * If the raw data of a data block would extend beyond the end of the byte
> + * array, only the ID of the data block is stored at the logical position
> + * and the full data block (ID and raw data) is stored at the beginning of
> + * the byte array. The referencing blk_lpos will point to the ID before the
> + * wrap and the next data block will be at the logical position adjacent the
> + * full data block after the wrap.
> + *
> + * Data rings have a @tail_lpos that points to the beginning of the oldest
> + * data block and a @head_lpos that points to the logical position of the
> + * next (not yet existing) data block.
> + *
> + * When a new data block should be created (and the ring is full), tail data
> + * blocks will first be invalidated by putting their associated descriptors
> + * into the reusable state and then pushing the @tail_lpos forward beyond
> + * them. Then the @head_lpos is pushed forward and is associated with a new
> + * descriptor. If a data block is not valid, the @tail_lpos cannot be
> + * advanced beyond it.
> + *
> + * Usage
> + * -----
> + * Here are some simple examples demonstrating writers and readers. For the
> + * examples a global ringbuffer (test_rb) is available (which is not the
> + * actual ringbuffer used by printk)::
> + *
> + *	DECLARE_PRINTKRB(test_rb, 15, 5, 3);
> + *
> + * This ringbuffer allows up to 32768 records (2 ^ 15) and has a size of
> + * 1 MiB (2 ^ (15 + 5)) for text data and 256 KiB (2 ^ (15 + 3)) for
> + * dictionary data.
> + *
> + * Sample writer code::
> + *
> + *	const char *dictstr = "dictionary text";
> + *	const char *textstr = "message text";
> + *	struct prb_reserved_entry e;
> + *	struct printk_record r;
> + *
> + *	// specify how much to allocate
> + *	prb_rec_init_wr(&r, strlen(textstr) + 1, strlen(dictstr) + 1);
> + *
> + *	if (prb_reserve(&e, &test_rb, &r)) {
> + *		snprintf(r.text_buf, r.text_buf_size, "%s", textstr);
> + *
> + *		// dictionary allocation may have failed
> + *		if (r.dict_buf)
> + *			snprintf(r.dict_buf, r.dict_buf_size, "%s", dictstr);
> + *
> + *		r.info->ts_nsec = local_clock();
> + *
> + *		prb_commit(&e);
> + *	}
> + *
> + * Sample reader code::
> + *
> + *	struct printk_info info;
> + *	struct printk_record r;
> + *	char text_buf[32];
> + *	char dict_buf[32];
> + *	u64 seq;
> + *
> + *	prb_rec_init_rd(&r, &info, &text_buf[0], sizeof(text_buf),
> + *			&dict_buf[0], sizeof(dict_buf));
> + *
> + *	prb_for_each_record(0, &test_rb, &seq, &r) {
> + *		if (info.seq != seq)
> + *			pr_warn("lost %llu records\n", info.seq - seq);
> + *
> + *		if (info.text_len > r.text_buf_size) {
> + *			pr_warn("record %llu text truncated\n", info.seq);
> + *			text_buf[sizeof(text_buf) - 1] = 0;
> + *		}
> + *
> + *		if (info.dict_len > r.dict_buf_size) {
> + *			pr_warn("record %llu dict truncated\n", info.seq);
> + *			dict_buf[sizeof(dict_buf) - 1] = 0;
> + *		}
> + *
> + *		pr_info("%llu: %llu: %s;%s\n", info.seq, info.ts_nsec,
> + *			&text_buf[0], info.dict_len ? &dict_buf[0] : "");
> + *	}
> + *
> + * Note that additional less convenient reader functions are available to
> + * allow complex record access.
> + *
> + * ABA Issues
> + * ~~~~~~~~~~
> + * To help avoid ABA issues, descriptors are referenced by IDs (array index
> + * values with tagged states) and data blocks are referenced by logical
> + * positions (array index values with tagged states). However, on 32-bit
> + * systems the number of tagged states is relatively small such that an ABA
> + * incident is (at least theoretically) possible. For example, if 4 million
> + * maximally sized (1KiB) printk messages were to occur in NMI context on a
> + * 32-bit system, the interrupted context would not be able to recognize that
> + * the 32-bit integer completely wrapped and thus represents a different
> + * data block than the one the interrupted context expects.
> + *
> + * To help combat this possibility, additional state checking is performed
> + * (such as using cmpxchg() even though set() would suffice). These extra
> + * checks are commented as such and will hopefully catch any ABA issue that
> + * a 32-bit system might experience.
> + *
> + * Memory Barriers
> + * ~~~~~~~~~~~~~~~
> + * Multiple memory barriers are used. To simplify proving correctness and
> + * generating litmus tests, lines of code related to memory barriers
> + * (loads, stores, and the associated memory barriers) are labeled::
> + *
> + *	LMM(function:letter)
> + *
> + * Comments reference the labels using only the "function:letter" part.
> + *
> + * The memory barrier pairs and their ordering are:
> + *
> + *   desc_reserve:D / desc_reserve:B
> + *     push descriptor tail (id), then push descriptor head (id)
> + *
> + *   desc_reserve:D / data_push_tail:B
> + *     push data tail (lpos), then set new descriptor reserved (state)
> + *
> + *   desc_reserve:D / desc_push_tail:C
> + *     push descriptor tail (id), then set new descriptor reserved (state)
> + *
> + *   desc_reserve:D / prb_first_seq:C
> + *     push descriptor tail (id), then set new descriptor reserved (state)
> + *
> + *   desc_reserve:F / desc_read:D
> + *     set new descriptor id and reserved (state), then allow writer changes
> + *
> + *   data_alloc:A / desc_read:D
> + *     set old descriptor reusable (state), then modify new data block area
> + *
> + *   data_alloc:A / data_push_tail:B
> + *     push data tail (lpos), then modify new data block area
> + *
> + *   prb_commit:B / desc_read:B
> + *     store writer changes, then set new descriptor committed (state)
> + *
> + *   data_push_tail:D / data_push_tail:A
> + *     set descriptor reusable (state), then push data tail (lpos)
> + *
> + *   desc_push_tail:B / desc_reserve:D
> + *     set descriptor reusable (state), then push descriptor tail (id)
> + */
> +
> +#define DATA_SIZE(data_ring)		_DATA_SIZE((data_ring)->size_bits)
> +#define DATA_SIZE_MASK(data_ring)	(DATA_SIZE(data_ring) - 1)
> +
> +#define DESCS_COUNT(desc_ring)		_DESCS_COUNT((desc_ring)->count_bits)
> +#define DESCS_COUNT_MASK(desc_ring)	(DESCS_COUNT(desc_ring) - 1)
> +
> +/* Determine the data array index from a logical position. */
> +#define DATA_INDEX(data_ring, lpos)	((lpos) & DATA_SIZE_MASK(data_ring))
> +
> +/* Determine the desc array index from an ID or sequence number. */
> +#define DESC_INDEX(desc_ring, n)	((n) & DESCS_COUNT_MASK(desc_ring))
> +
> +/* Determine how many times the data array has wrapped. */
> +#define DATA_WRAPS(data_ring, lpos)	((lpos) >> (data_ring)->size_bits)
> +
> +/* Get the logical position at index 0 of the current wrap. */
> +#define DATA_THIS_WRAP_START_LPOS(data_ring, lpos) \
> +((lpos) & ~DATA_SIZE_MASK(data_ring))
> +
> +/* Get the ID for the same index of the previous wrap as the given ID. */
> +#define DESC_ID_PREV_WRAP(desc_ring, id) \
> +DESC_ID((id) - DESCS_COUNT(desc_ring))
> +
> +/* A data block: maps to the raw data within the data ring. */
> +struct prb_data_block {
> +	unsigned long	id;
> +	char		data[0];
> +};
> +
> +static struct prb_desc *to_desc(struct prb_desc_ring *desc_ring, u64 n)
> +{
> +	return &desc_ring->descs[DESC_INDEX(desc_ring, n)];
> +}
> +
> +static struct prb_data_block *to_block(struct prb_data_ring *data_ring,
> +				       unsigned long begin_lpos)
> +{
> +	return (void *)&data_ring->data[DATA_INDEX(data_ring, begin_lpos)];
> +}
> +
> +/*
> + * Increase the data size to account for data block meta data plus any
> + * padding so that the adjacent data block is aligned on the ID size.
> + */
> +static unsigned int to_blk_size(unsigned int size)
> +{
> +	struct prb_data_block *db = NULL;
> +
> +	size += sizeof(*db);
> +	size = ALIGN(size, sizeof(db->id));
> +	return size;
> +}
> +
> +/*
> + * Sanity checker for reserve size. The ringbuffer code assumes that a data
> + * block does not exceed the maximum possible size that could fit within the
> + * ringbuffer. This function provides that basic size check so that the
> + * assumption is safe.
> + *
> + * Writers are also not allowed to write 0-sized (data-less) records. Such
> + * records are used only internally by the ringbuffer.
> + */
> +static bool data_check_size(struct prb_data_ring *data_ring, unsigned int size)
> +{
> +	struct prb_data_block *db = NULL;
> +
> +	/*
> +	 * Writers are not allowed to write data-less records. Such records
> +	 * are used only internally by the ringbuffer to denote records where
> +	 * their data failed to allocate or have been lost.
> +	 */
> +	if (size == 0)
> +		return false;
> +
> +	/*
> +	 * Ensure the alignment padded size could possibly fit in the data
> +	 * array. The largest possible data block must still leave room for
> +	 * at least the ID of the next block.
> +	 */
> +	size = to_blk_size(size);
> +	if (size > DATA_SIZE(data_ring) - sizeof(db->id))
> +		return false;
> +
> +	return true;
> +}
> +
> +/* The possible responses of a descriptor state-query. */
> +enum desc_state {
> +	desc_miss,	/* ID mismatch */
> +	desc_reserved,	/* reserved, in use by writer */
> +	desc_committed, /* committed, writer is done */
> +	desc_reusable,	/* free, not yet used by any writer */
> +};
> +
> +/* Query the state of a descriptor. */
> +static enum desc_state get_desc_state(unsigned long id,
> +				      unsigned long state_val)
> +{
> +	if (id != DESC_ID(state_val))
> +		return desc_miss;
> +
> +	if (state_val & DESC_REUSE_MASK)
> +		return desc_reusable;
> +
> +	if (state_val & DESC_COMMITTED_MASK)
> +		return desc_committed;
> +
> +	return desc_reserved;
> +}
> +
> +/*
> + * Get a copy of a specified descriptor and its queried state. A descriptor
> + * that is not in the committed or reusable state must be considered garbage
> + * by the reader.
> + */
> +static enum desc_state desc_read(struct prb_desc_ring *desc_ring,
> +				 unsigned long id, struct prb_desc *desc_out)
> +{
> +	struct prb_desc *desc = to_desc(desc_ring, id);
> +	atomic_long_t *state_var = &desc->state_var;
> +	enum desc_state d_state;
> +	unsigned long state_val;
> +
> +	/* Check the descriptor state. */
> +	state_val = atomic_long_read(state_var); /* LMM(desc_read:A) */
> +	d_state = get_desc_state(id, state_val);
> +	if (d_state != desc_committed && d_state != desc_reusable)
> +		return d_state;
> +
> +	/*
> +	 * Guarantee the state is loaded before copying the descriptor
> +	 * content. This avoids copying obsolete descriptor content that might
> +	 * not apply to the descriptor state. This pairs with prb_commit:B.
> +	 *
> +	 * Memory barrier involvement:
> +	 *
> +	 * If desc_read:A reads from prb_commit:B, then desc_read:C reads
> +	 * from prb_commit:A.
> +	 *
> +	 * Relies on:
> +	 *
> +	 * WMB from prb_commit:A to prb_commit:B
> +	 *    matching
> +	 * RMB from desc_read:A to desc_read:C
> +	 */
> +	smp_rmb(); /* LMM(desc_read:B) */
> +
> +	/*
> +	 * Copy the descriptor data. The data is not valid until the
> +	 * state has been re-checked.
> +	 */
> +	memcpy(desc_out, desc, sizeof(*desc_out)); /* LMM(desc_read:C) */
> +
> +	/*
> +	 * 1. Guarantee the descriptor content is loaded before re-checking
> +	 *    the state. This avoids reading an obsolete descriptor state
> +	 *    that may not apply to the copied content. This pairs with
> +	 *    desc_reserve:F.
> +	 *
> +	 *    Memory barrier involvement:
> +	 *
> +	 *    If desc_read:C reads from desc_reserve:G, then desc_read:E
> +	 *    reads from desc_reserve:F.
> +	 *
> +	 *    Relies on:
> +	 *
> +	 *    WMB from desc_reserve:F to desc_reserve:G
> +	 *       matching
> +	 *    RMB from desc_read:C to desc_read:E
> +	 *
> +	 * 2. Guarantee the record data is loaded before re-checking the
> +	 *    state. This avoids reading an obsolete descriptor state that may
> +	 *    not apply to the copied data. This pairs with data_alloc:A.
> +	 *
> +	 *    Memory barrier involvement:
> +	 *
> +	 *    If copy_data:A reads from data_alloc:B, then desc_read:E
> +	 *    reads from desc_make_reusable:A.
> +	 *
> +	 *    Relies on:
> +	 *
> +	 *    MB from desc_make_reusable:A to data_alloc:B
> +	 *       matching
> +	 *    RMB from desc_read:C to desc_read:E
> +	 *
> +	 *    Note: desc_make_reusable:A and data_alloc:B can be different
> +	 *          CPUs. However, the data_alloc:B CPU (which performs the
> +	 *          full memory barrier) must have previously seen
> +	 *          desc_make_reusable:A.
> +	 */
> +	smp_rmb(); /* LMM(desc_read:D) */
> +
> +	/* Re-check the descriptor state. */
> +	state_val = atomic_long_read(state_var); /* LMM(desc_read:E) */
> +	return get_desc_state(id, state_val);
> +}
> +
> +/*
> + * Take a specified descriptor out of the committed state by attempting
> + * the transition from committed to reusable. Either this context or some
> + * other context will have been successful.
> + */
> +static void desc_make_reusable(struct prb_desc_ring *desc_ring,
> +			       unsigned long id)
> +{
> +	unsigned long val_committed = id | DESC_COMMITTED_MASK;
> +	unsigned long val_reusable = val_committed | DESC_REUSE_MASK;
> +	struct prb_desc *desc = to_desc(desc_ring, id);
> +	atomic_long_t *state_var = &desc->state_var;
> +
> +	atomic_long_cmpxchg_relaxed(state_var, val_committed,
> +				    val_reusable); /* LMM(desc_make_reusable:A) */
> +}
> +
> +/*
> + * Given a data ring (text or dict), put the associated descriptor of each
> + * data block from @lpos_begin until @lpos_end into the reusable state.
> + *
> + * If there is any problem making the associated descriptor reusable, either
> + * the descriptor has not yet been committed or another writer context has
> + * already pushed the tail lpos past the problematic data block. Regardless,
> + * on error the caller can re-load the tail lpos to determine the situation.
> + */
> +static bool data_make_reusable(struct printk_ringbuffer *rb,
> +			       struct prb_data_ring *data_ring,
> +			       unsigned long lpos_begin,
> +			       unsigned long lpos_end,
> +			       unsigned long *lpos_out)
> +{
> +	struct prb_desc_ring *desc_ring = &rb->desc_ring;
> +	struct prb_data_blk_lpos *blk_lpos;
> +	struct prb_data_block *blk;
> +	enum desc_state d_state;
> +	struct prb_desc desc;
> +	unsigned long id;
> +
> +	/*
> +	 * Using the provided @data_ring, point @blk_lpos to the correct
> +	 * blk_lpos within the local copy of the descriptor.
> +	 */
> +	if (data_ring == &rb->text_data_ring)
> +		blk_lpos = &desc.text_blk_lpos;
> +	else
> +		blk_lpos = &desc.dict_blk_lpos;
> +
> +	/* Loop until @lpos_begin has advanced to or beyond @lpos_end. */
> +	while ((lpos_end - lpos_begin) - 1 < DATA_SIZE(data_ring)) {
> +		blk = to_block(data_ring, lpos_begin);
> +
> +		/*
> +		 * Load the block ID from the data block. This is a data race
> +		 * against a writer that may have newly reserved this data
> +		 * area. If the loaded value matches a valid descriptor ID,
> +		 * the blk_lpos of that descriptor will be checked to make
> +		 * sure it points back to this data block. If the check fails,
> +		 * the data area has been recycled by another writer.
> +		 */
> +		id = blk->id; /* LMM(data_make_reusable:A) */
> +
> +		d_state = desc_read(desc_ring, id, &desc); /* LMM(data_make_reusable:B) */
> +
> +		switch (d_state) {
> +		case desc_miss:
> +			return false;
> +		case desc_reserved:
> +			return false;
> +		case desc_committed:
> +			/*
> +			 * This data block is invalid if the descriptor
> +			 * does not point back to it.
> +			 */
> +			if (blk_lpos->begin != lpos_begin)
> +				return false;
> +			desc_make_reusable(desc_ring, id);
> +			break;
> +		case desc_reusable:
> +			/*
> +			 * This data block is invalid if the descriptor
> +			 * does not point back to it.
> +			 */
> +			if (blk_lpos->begin != lpos_begin)
> +				return false;
> +			break;
> +		}
> +
> +		/* Advance @lpos_begin to the next data block. */
> +		lpos_begin = blk_lpos->next;
> +	}
> +
> +	*lpos_out = lpos_begin;
> +	return true;
> +}
> +
> +/*
> + * Advance the data ring tail to at least @lpos. This function puts
> + * descriptors into the reusable state if the tail is pushed beyond
> + * their associated data block.
> + */
> +static bool data_push_tail(struct printk_ringbuffer *rb,
> +			   struct prb_data_ring *data_ring,
> +			   unsigned long lpos)
> +{
> +	unsigned long tail_lpos_new;
> +	unsigned long tail_lpos;
> +	unsigned long next_lpos;
> +
> +	/* If @lpos is not valid, there is nothing to do. */
> +	if (lpos == INVALID_LPOS)
> +		return true;
> +
> +	/*
> +	 * Any descriptor states that have transitioned to reusable due to the
> +	 * data tail being pushed to this loaded value will be visible to this
> +	 * CPU. This pairs with data_push_tail:D.
> +	 *
> +	 * Memory barrier involvement:
> +	 *
> +	 * If data_push_tail:A reads from data_push_tail:D, then this CPU can
> +	 * see desc_make_reusable:A.
> +	 *
> +	 * Relies on:
> +	 *
> +	 * MB from desc_make_reusable:A to data_push_tail:D
> +	 *    matches
> +	 * READFROM from data_push_tail:D to data_push_tail:A
> +	 *    thus
> +	 * READFROM from desc_make_reusable:A to this CPU
> +	 */
> +	tail_lpos = atomic_long_read(&data_ring->tail_lpos); /* LMM(data_push_tail:A) */
> +
> +	/*
> +	 * Loop until the tail lpos is at or beyond @lpos. This condition
> +	 * may already be satisfied, resulting in no full memory barrier
> +	 * from data_push_tail:D being performed. However, since this CPU
> +	 * sees the new tail lpos, any descriptor states that transitioned to
> +	 * the reusable state must already be visible.
> +	 */
> +	while ((lpos - tail_lpos) - 1 < DATA_SIZE(data_ring)) {
> +		/*
> +		 * Make all descriptors reusable that are associated with
> +		 * data blocks before @lpos.
> +		 */
> +		if (!data_make_reusable(rb, data_ring, tail_lpos, lpos,
> +					&next_lpos)) {
> +			/*
> +			 * 1. Guarantee the block ID loaded in
> +			 *    data_make_reusable() is performed before
> +			 *    reloading the tail lpos. The failed
> +			 *    data_make_reusable() may be due to a newly
> +			 *    recycled data area causing the tail lpos to
> +			 *    have been previously pushed. This pairs with
> +			 *    data_alloc:A.
> +			 *
> +			 *    Memory barrier involvement:
> +			 *
> +			 *    If data_make_reusable:A reads from data_alloc:B,
> +			 *    then data_push_tail:C reads from
> +			 *    data_push_tail:D.
> +			 *
> +			 *    Relies on:
> +			 *
> +			 *    MB from data_push_tail:D to data_alloc:B
> +			 *       matching
> +			 *    RMB from data_make_reusable:A to
> +			 *    data_push_tail:C
> +			 *
> +			 *    Note: data_push_tail:D and data_alloc:B can be
> +			 *          different CPUs. However, the data_alloc:B
> +			 *          CPU (which performs the full memory
> +			 *          barrier) must have previously seen
> +			 *          data_push_tail:D.
> +			 *
> +			 * 2. Guarantee the descriptor state loaded in
> +			 *    data_make_reusable() is performed before
> +			 *    reloading the tail lpos. The failed
> +			 *    data_make_reusable() may be due to a newly
> +			 *    recycled descriptor causing the tail lpos to
> +			 *    have been previously pushed. This pairs with
> +			 *    desc_reserve:D.
> +			 *
> +			 *    Memory barrier involvement:
> +			 *
> +			 *    If data_make_reusable:B reads from
> +			 *    desc_reserve:F, then data_push_tail:C reads
> +			 *    from data_push_tail:D.
> +			 *
> +			 *    Relies on:
> +			 *
> +			 *    MB from data_push_tail:D to desc_reserve:F
> +			 *       matching
> +			 *    RMB from data_make_reusable:B to
> +			 *    data_push_tail:C
> +			 *
> +			 *    Note: data_push_tail:D and desc_reserve:F can
> +			 *          be different CPUs. However, the
> +			 *          desc_reserve:F CPU (which performs the
> +			 *          full memory barrier) must have previously
> +			 *          seen data_push_tail:D.
> +			 */
> +			smp_rmb(); /* LMM(data_push_tail:B) */
> +
> +			tail_lpos_new = atomic_long_read(&data_ring->tail_lpos
> +							); /* LMM(data_push_tail:C) */
> +			if (tail_lpos_new == tail_lpos)
> +				return false;
> +
> +			/* Another CPU pushed the tail. Try again. */
> +			tail_lpos = tail_lpos_new;
> +			continue;
> +		}
> +
> +		/*
> +		 * Guarantee any descriptor states that have transitioned to
> +		 * reusable are stored before pushing the tail lpos. A full
> +		 * memory barrier is needed since other CPUs may have made
> +		 * the descriptor states reusable. This pairs with
> +		 * data_push_tail:A.
> +		 */
> +		if (atomic_long_try_cmpxchg(&data_ring->tail_lpos, &tail_lpos,
> +					    next_lpos)) { /* LMM(data_push_tail:D) */
> +			break;
> +		}
> +	}
> +
> +	return true;
> +}
> +
> +/*
> + * Advance the desc ring tail. This function advances the tail by one
> + * descriptor, thus invalidating the oldest descriptor. Before advancing
> + * the tail, the tail descriptor is made reusable and all data blocks up to
> + * and including the descriptor's data block are invalidated (i.e. the data
> + * ring tail is pushed past the data block of the descriptor being made
> + * reusable).
> + */
> +static bool desc_push_tail(struct printk_ringbuffer *rb,
> +			   unsigned long tail_id)
> +{
> +	struct prb_desc_ring *desc_ring = &rb->desc_ring;
> +	enum desc_state d_state;
> +	struct prb_desc desc;
> +
> +	d_state = desc_read(desc_ring, tail_id, &desc);
> +
> +	switch (d_state) {
> +	case desc_miss:
> +		/*
> +		 * If the ID is exactly 1 wrap behind the expected, it is
> +		 * in the process of being reserved by another writer and
> +		 * must be considered reserved.
> +		 */
> +		if (DESC_ID(atomic_long_read(&desc.state_var)) ==
> +		    DESC_ID_PREV_WRAP(desc_ring, tail_id)) {
> +			return false;
> +		}
> +
> +		/*
> +		 * The ID has changed. Another writer must have pushed the
> +		 * tail and recycled the descriptor already. Success is
> +		 * returned because the caller is only interested in the
> +		 * specified tail being pushed, which it was.
> +		 */
> +		return true;
> +	case desc_reserved:
> +		return false;
> +	case desc_committed:
> +		desc_make_reusable(desc_ring, tail_id);
> +		break;
> +	case desc_reusable:
> +		break;
> +	}
> +
> +	/*
> +	 * Data blocks must be invalidated before their associated
> +	 * descriptor can be made available for recycling. Invalidating
> +	 * them later is not possible because there is no way to trust
> +	 * data blocks once their associated descriptor is gone.
> +	 */
> +
> +	if (!data_push_tail(rb, &rb->text_data_ring, desc.text_blk_lpos.next))
> +		return false;
> +	if (!data_push_tail(rb, &rb->dict_data_ring, desc.dict_blk_lpos.next))
> +		return false;
> +
> +	/*
> +	 * Check the next descriptor after @tail_id before pushing the tail
> +	 * to it because the tail must always be in a committed or reusable
> +	 * state. The implementation of prb_first_seq() relies on this.
> +	 *
> +	 * A successful read implies that the next descriptor is less than or
> +	 * equal to @head_id so there is no risk of pushing the tail past the
> +	 * head.
> +	 */
> +	d_state = desc_read(desc_ring, DESC_ID(tail_id + 1), &desc); /* LMM(desc_push_tail:A) */
> +
> +	if (d_state == desc_committed || d_state == desc_reusable) {
> +		/*
> +		 * Guarantee any descriptor states that have transitioned to
> +		 * reusable are stored before pushing the tail ID. This allows
> +		 * verifying the recycled descriptor state. A full memory
> +		 * barrier is needed since other CPUs may have made the
> +		 * descriptor states reusable. This pairs with desc_reserve:D.
> +		 */
> +		atomic_long_cmpxchg(&desc_ring->tail_id, tail_id,
> +				    DESC_ID(tail_id + 1)); /* LMM(desc_push_tail:B) */
> +	} else {
> +		/*
> +		 * Guarantee the last state load from desc_read() is before
> +		 * reloading @tail_id in order to see a new tail ID in the
> +		 * case that the descriptor has been recycled. This pairs
> +		 * with desc_reserve:D.
> +		 *
> +		 * Memory barrier involvement:
> +		 *
> +		 * If desc_push_tail:A reads from desc_reserve:F, then
> +		 * desc_push_tail:D reads from desc_push_tail:B.
> +		 *
> +		 * Relies on:
> +		 *
> +		 * MB from desc_push_tail:B to desc_reserve:F
> +		 *    matching
> +		 * RMB from desc_push_tail:A to desc_push_tail:D
> +		 *
> +		 * Note: desc_push_tail:B and desc_reserve:F can be different
> +		 *       CPUs. However, the desc_reserve:F CPU (which performs
> +		 *       the full memory barrier) must have previously seen
> +		 *       desc_push_tail:B.
> +		 */
> +		smp_rmb(); /* LMM(desc_push_tail:C) */
> +
> +		/*
> +		 * Re-check the tail ID. The descriptor following @tail_id is
> +		 * not in an allowed tail state. But if the tail has since
> +		 * been moved by another CPU, then it does not matter.
> +		 */
> +		if (atomic_long_read(&desc_ring->tail_id) == tail_id) /* LMM(desc_push_tail:D) */
> +			return false;
> +	}
> +
> +	return true;
> +}
> +
> +/* Reserve a new descriptor, invalidating the oldest if necessary. */
> +static bool desc_reserve(struct printk_ringbuffer *rb, unsigned long *id_out)
> +{
> +	struct prb_desc_ring *desc_ring = &rb->desc_ring;
> +	unsigned long prev_state_val;
> +	unsigned long id_prev_wrap;
> +	struct prb_desc *desc;
> +	unsigned long head_id;
> +	unsigned long id;
> +
> +	head_id = atomic_long_read(&desc_ring->head_id); /* LMM(desc_reserve:A) */
> +
> +	do {
> +		desc = to_desc(desc_ring, head_id);
> +
> +		id = DESC_ID(head_id + 1);
> +		id_prev_wrap = DESC_ID_PREV_WRAP(desc_ring, id);
> +
> +		/*
> +		 * Guarantee the head ID is read before reading the tail ID.
> +		 * Since the tail ID is updated before the head ID, this
> +		 * guarantees that @id_prev_wrap is never ahead of the tail
> +		 * ID. This pairs with desc_reserve:D.
> +		 *
> +		 * Memory barrier involvement:
> +		 *
> +		 * If desc_reserve:A reads from desc_reserve:D, then
> +		 * desc_reserve:C reads from desc_push_tail:B.
> +		 *
> +		 * Relies on:
> +		 *
> +		 * MB from desc_push_tail:B to desc_reserve:D
> +		 *    matching
> +		 * RMB from desc_reserve:A to desc_reserve:C
> +		 *
> +		 * Note: desc_push_tail:B and desc_reserve:D can be different
> +		 *       CPUs. However, the desc_reserve:D CPU (which performs
> +		 *       the full memory barrier) must have previously seen
> +		 *       desc_push_tail:B.
> +		 */
> +		smp_rmb(); /* LMM(desc_reserve:B) */
> +
> +		if (id_prev_wrap == atomic_long_read(&desc_ring->tail_id
> +						    )) { /* LMM(desc_reserve:C) */
> +			/*
> +			 * Make space for the new descriptor by
> +			 * advancing the tail.
> +			 */
> +			if (!desc_push_tail(rb, id_prev_wrap))
> +				return false;
> +		}
> +
> +		/*
> +		 * 1. Guarantee the tail ID is read before validating the
> +		 *    recycled descriptor state. A read memory barrier is
> +		 *    sufficient for this. This pairs with desc_push_tail:B.
> +		 *
> +		 *    Memory barrier involvement:
> +		 *
> +		 *    If desc_reserve:C reads from desc_push_tail:B, then
> +		 *    desc_reserve:E reads from desc_make_reusable:A.
> +		 *
> +		 *    Relies on:
> +		 *
> +		 *    MB from desc_make_reusable:A to desc_push_tail:B
> +		 *       matching
> +		 *    RMB from desc_reserve:C to desc_reserve:E
> +		 *
> +		 *    Note: desc_make_reusable:A and desc_push_tail:B can be
> +		 *          different CPUs. However, the desc_push_tail:B CPU
> +		 *          (which performs the full memory barrier) must have
> +		 *          previously seen desc_make_reusable:A.
> +		 *
> +		 * 2. Guarantee the tail ID is stored before storing the head
> +		 *    ID. This pairs with desc_reserve:B.
> +		 *
> +		 * 3. Guarantee any data ring tail changes are stored before
> +		 *    recycling the descriptor. Data ring tail changes can
> +		 *    happen via desc_push_tail()->data_push_tail(). A full
> +		 *    memory barrier is needed since another CPU may have
> +		 *    pushed the data ring tails. This pairs with
> +		 *    data_push_tail:B.
> +		 *
> +		 * 4. Guarantee a new tail ID is stored before recycling the
> +		 *    descriptor. A full memory barrier is needed since
> +		 *    another CPU may have pushed the tail ID. This pairs
> +		 *    with desc_push_tail:C and this also pairs with
> +		 *    prb_first_seq:C.
> +		 */
> +	} while (!atomic_long_try_cmpxchg(&desc_ring->head_id, &head_id,
> +					  id)); /* LMM(desc_reserve:D) */
> +
> +	desc = to_desc(desc_ring, id);
> +
> +	/*
> +	 * If the descriptor has been recycled, verify the old state val.
> +	 * See "ABA Issues" about why this verification is performed.
> +	 */
> +	prev_state_val = atomic_long_read(&desc->state_var); /* LMM(desc_reserve:E) */
> +	if (prev_state_val &&
> +	    prev_state_val != (id_prev_wrap | DESC_COMMITTED_MASK | DESC_REUSE_MASK)) {
> +		WARN_ON_ONCE(1);
> +		return false;
> +	}
> +
> +	/*
> +	 * Assign the descriptor a new ID and set its state to reserved.
> +	 * See "ABA Issues" about why cmpxchg() instead of set() is used.
> +	 *
> +	 * Guarantee the new descriptor ID and state is stored before making
> +	 * any other changes. A write memory barrier is sufficient for this.
> +	 * This pairs with desc_read:D.
> +	 */
> +	if (!atomic_long_try_cmpxchg(&desc->state_var, &prev_state_val,
> +				     id | 0)) { /* LMM(desc_reserve:F) */
> +		WARN_ON_ONCE(1);
> +		return false;
> +	}
> +
> +	/* Now data in @desc can be modified: LMM(desc_reserve:G) */
> +
> +	*id_out = id;
> +	return true;
> +}
> +
> +/* Determine the end of a data block. */
> +static unsigned long get_next_lpos(struct prb_data_ring *data_ring,
> +				   unsigned long lpos, unsigned int size)
> +{
> +	unsigned long begin_lpos;
> +	unsigned long next_lpos;
> +
> +	begin_lpos = lpos;
> +	next_lpos = lpos + size;
> +
> +	/* First check if the data block does not wrap. */
> +	if (DATA_WRAPS(data_ring, begin_lpos) == DATA_WRAPS(data_ring, next_lpos))
> +		return next_lpos;
> +
> +	/* Wrapping data blocks store their data at the beginning. */
> +	return (DATA_THIS_WRAP_START_LPOS(data_ring, next_lpos) + size);
> +}
> +
> +/*
> + * Allocate a new data block, invalidating the oldest data block(s)
> + * if necessary. This function also associates the data block with
> + * a specified descriptor.
> + */
> +static char *data_alloc(struct printk_ringbuffer *rb,
> +			struct prb_data_ring *data_ring, unsigned int size,
> +			struct prb_data_blk_lpos *blk_lpos, unsigned long id)
> +{
> +	struct prb_data_block *blk;
> +	unsigned long begin_lpos;
> +	unsigned long next_lpos;
> +
> +	if (!data_ring->data || size == 0) {
> +		/* Specify a data-less block. */
> +		blk_lpos->begin = INVALID_LPOS;
> +		blk_lpos->next = INVALID_LPOS;
> +		return NULL;
> +	}
> +
> +	size = to_blk_size(size);
> +
> +	begin_lpos = atomic_long_read(&data_ring->head_lpos);
> +
> +	do {
> +		next_lpos = get_next_lpos(data_ring, begin_lpos, size);
> +
> +		if (!data_push_tail(rb, data_ring, next_lpos - DATA_SIZE(data_ring))) {
> +			/* Failed to allocate, specify a data-less block. */
> +			blk_lpos->begin = INVALID_LPOS;
> +			blk_lpos->next = INVALID_LPOS;
> +			return NULL;
> +		}
> +
> +		/*
> +		 * 1. Guarantee any descriptor states that have transitioned
> +		 *    to reusable are stored before modifying the newly
> +		 *    allocated data area. A full memory barrier is needed
> +		 *    since other CPUs may have made the descriptor states
> +		 *    reusable. See data_push_tail:A about why the reusable
> +		 *    states are visible. This pairs with desc_read:D.
> +		 *
> +		 * 2. Guarantee any updated tail lpos is stored before
> +		 *    modifying the newly allocated data area. Another CPU may
> +		 *    be in data_make_reusable() and is reading a block ID
> +		 *    from this area. data_make_reusable() can handle reading
> +		 *    a garbage block ID value, but then it must be able to
> +		 *    load a new tail lpos. A full memory barrier is needed
> +		 *    since other CPUs may have updated the tail lpos. This
> +		 *    pairs with data_push_tail:B.
> +		 */
> +	} while (!atomic_long_try_cmpxchg(&data_ring->head_lpos, &begin_lpos,
> +					  next_lpos)); /* LMM(data_alloc:A) */
> +
> +	blk = to_block(data_ring, begin_lpos);
> +	blk->id = id; /* LMM(data_alloc:B) */
> +
> +	if (DATA_WRAPS(data_ring, begin_lpos) != DATA_WRAPS(data_ring, next_lpos)) {
> +		/* Wrapping data blocks store their data at the beginning. */
> +		blk = to_block(data_ring, 0);
> +
> +		/*
> +		 * Store the ID on the wrapped block for consistency.
> +		 * The printk_ringbuffer does not actually use it.
> +		 */
> +		blk->id = id;
> +	}
> +
> +	blk_lpos->begin = begin_lpos;
> +	blk_lpos->next = next_lpos;
> +
> +	return &blk->data[0];
> +}
> +
> +/* Return the number of bytes used by a data block. */
> +static unsigned int space_used(struct prb_data_ring *data_ring,
> +			       struct prb_data_blk_lpos *blk_lpos)
> +{
> +	if (DATA_WRAPS(data_ring, blk_lpos->begin) == DATA_WRAPS(data_ring, blk_lpos->next)) {
> +		/* Data block does not wrap. */
> +		return (DATA_INDEX(data_ring, blk_lpos->next) -
> +			DATA_INDEX(data_ring, blk_lpos->begin));
> +	}
> +
> +	/*
> +	 * For wrapping data blocks, the trailing (wasted) space is
> +	 * also counted.
> +	 */
> +	return (DATA_INDEX(data_ring, blk_lpos->next) +
> +		DATA_SIZE(data_ring) - DATA_INDEX(data_ring, blk_lpos->begin));
> +}
> +
> +/**
> + * prb_reserve() - Reserve space in the ringbuffer.
> + *
> + * @e:  The entry structure to setup.
> + * @rb: The ringbuffer to reserve data in.
> + * @r:  The record structure to allocate buffers for.
> + *
> + * This is the public function available to writers to reserve data.
> + *
> + * The writer specifies the text and dict sizes to reserve by setting the
> + * @text_buf_size and @dict_buf_size fields of @r, respectively. Dictionaries
> + * are optional, so @dict_buf_size is allowed to be 0. To ensure proper
> + * initialization of @r, prb_rec_init_wr() should be used.
> + *
> + * Context: Any context. Disables local interrupts on success.
> + * Return: true if at least text data could be allocated, otherwise false.
> + *
> + * On success, the fields @info, @text_buf, @dict_buf of @r will be set by
> + * this function and should be filled in by the writer before committing. Also
> + * on success, prb_record_text_space() can be used on @e to query the actual
> + * space used for the text data block.
> + *
> + * If the function fails to reserve dictionary space (but all else succeeded),
> + * it will still report success. In that case @dict_buf is set to NULL and
> + * @dict_buf_size is set to 0. Writers must check this before writing to
> + * dictionary space.
> + *
> + * @info->text_len and @info->dict_len will already be set to @text_buf_size
> + * and @dict_buf_size, respectively. If dictionary space reservation fails,
> + * @info->dict_len is set to 0.
> + */
> +bool prb_reserve(struct prb_reserved_entry *e, struct printk_ringbuffer *rb,
> +		 struct printk_record *r)
> +{
> +	struct prb_desc_ring *desc_ring = &rb->desc_ring;
> +	struct prb_desc *d;
> +	unsigned long id;
> +
> +	if (!data_check_size(&rb->text_data_ring, r->text_buf_size))
> +		goto fail;
> +
> +	/* Records are allowed to not have dictionaries. */
> +	if (r->dict_buf_size) {
> +		if (!data_check_size(&rb->dict_data_ring, r->dict_buf_size))
> +			goto fail;
> +	}
> +
> +	/*
> +	 * Descriptors in the reserved state act as blockers to all further
> +	 * reservations once the desc_ring has fully wrapped. Disable
> +	 * interrupts during the reserve/commit window in order to minimize
> +	 * the likelihood of this happening.
> +	 */
> +	local_irq_save(e->irqflags);
> +
> +	if (!desc_reserve(rb, &id)) {
> +		/* Descriptor reservation failures are tracked. */
> +		atomic_long_inc(&rb->fail);
> +		local_irq_restore(e->irqflags);
> +		goto fail;
> +	}
> +
> +	d = to_desc(desc_ring, id);
> +
> +	/*
> +	 * Set the @e fields here so that prb_commit() can be used if
> +	 * text data allocation fails.
> +	 */
> +	e->rb = rb;
> +	e->id = id;
> +
> +	/*
> +	 * Initialize the sequence number if it has "never been set".
> +	 * Otherwise just increment it by a full wrap.
> +	 *
> +	 * @seq is considered "never been set" if it has a value of 0,
> +	 * _except_ for @descs[0], which was specially setup by the ringbuffer
> +	 * initializer and therefore is always considered as set.
> +	 *
> +	 * See the "Bootstrap" comment block in printk_ringbuffer.h for
> +	 * details about how the initializer bootstraps the descriptors.
> +	 */
> +	if (d->info.seq == 0 && DESC_INDEX(desc_ring, id) != 0)
> +		d->info.seq = DESC_INDEX(desc_ring, id);
> +	else
> +		d->info.seq += DESCS_COUNT(desc_ring);
> +
> +	r->text_buf = data_alloc(rb, &rb->text_data_ring, r->text_buf_size,
> +				 &d->text_blk_lpos, id);
> +	/* If text data allocation fails, a data-less record is committed. */
> +	if (r->text_buf_size && !r->text_buf) {
> +		d->info.text_len = 0;
> +		d->info.dict_len = 0;
> +		prb_commit(e);
> +		/* prb_commit() re-enabled interrupts. */
> +		goto fail;
> +	}
> +
> +	r->dict_buf = data_alloc(rb, &rb->dict_data_ring, r->dict_buf_size,
> +				 &d->dict_blk_lpos, id);
> +	/*
> +	 * If dict data allocation fails, the caller can still commit
> +	 * text. But dictionary information will not be available.
> +	 */
> +	if (r->dict_buf_size && !r->dict_buf)
> +		r->dict_buf_size = 0;
> +
> +	r->info = &d->info;
> +
> +	/* Set default values for the sizes. */
> +	d->info.text_len = r->text_buf_size;
> +	d->info.dict_len = r->dict_buf_size;
> +
> +	/* Record full text space used by record. */
> +	e->text_space = space_used(&rb->text_data_ring, &d->text_blk_lpos);
> +
> +	return true;
> +fail:
> +	/* Make it clear to the caller that the reserve failed. */
> +	memset(r, 0, sizeof(*r));
> +	return false;
> +}
> +
> +/**
> + * prb_commit() - Commit (previously reserved) data to the ringbuffer.
> + *
> + * @e: The entry containing the reserved data information.
> + *
> + * This is the public function available to writers to commit data.
> + *
> + * Context: Any context. Enables local interrupts.
> + */
> +void prb_commit(struct prb_reserved_entry *e)
> +{
> +	struct prb_desc_ring *desc_ring = &e->rb->desc_ring;
> +	struct prb_desc *d = to_desc(desc_ring, e->id);
> +	unsigned long prev_state_val = e->id | 0;
> +
> +	/* Now the writer has finished all writing: LMM(prb_commit:A) */
> +
> +	/*
> +	 * Set the descriptor as committed. See "ABA Issues" about why
> +	 * cmpxchg() instead of set() is used.
> +	 *
> +	 * Guarantee all record data is stored before the descriptor state
> +	 * is stored as committed. A write memory barrier is sufficient for
> +	 * this. This pairs with desc_read:B.
> +	 */
> +	if (!atomic_long_try_cmpxchg(&d->state_var, &prev_state_val,
> +				     e->id | DESC_COMMITTED_MASK)) { /* LMM(prb_commit:B) */
> +		WARN_ON_ONCE(1);
> +	}
> +
> +	/* Restore interrupts, the reserve/commit window is finished. */
> +	local_irq_restore(e->irqflags);
> +}
> +
> +/*
> + * Given @blk_lpos, return a pointer to the raw data from the data block
> + * and calculate the size of the data part. A NULL pointer is returned
> + * if @blk_lpos specifies values that could never be legal.
> + *
> + * This function (used by readers) performs strict validation on the lpos
> + * values to possibly detect bugs in the writer code. A WARN_ON_ONCE() is
> + * triggered if an internal error is detected.
> + */
> +static char *get_data(struct prb_data_ring *data_ring,
> +		      struct prb_data_blk_lpos *blk_lpos,
> +		      unsigned int *data_size)
> +{
> +	struct prb_data_block *db;
> +
> +	/* Data-less data block description. */
> +	if (blk_lpos->begin == INVALID_LPOS &&
> +	    blk_lpos->next == INVALID_LPOS) {
> +		return NULL;
> +	}
> +
> +	/* Regular data block: @begin less than @next and in same wrap. */
> +	if (DATA_WRAPS(data_ring, blk_lpos->begin) == DATA_WRAPS(data_ring, blk_lpos->next) &&
> +	    blk_lpos->begin < blk_lpos->next) {
> +		db = to_block(data_ring, blk_lpos->begin);
> +		*data_size = blk_lpos->next - blk_lpos->begin;
> +
> +	/* Wrapping data block: @begin is one wrap behind @next. */
> +	} else if (DATA_WRAPS(data_ring, blk_lpos->begin + DATA_SIZE(data_ring)) ==
> +		   DATA_WRAPS(data_ring, blk_lpos->next)) {
> +		db = to_block(data_ring, 0);
> +		*data_size = DATA_INDEX(data_ring, blk_lpos->next);
> +
> +	/* Illegal block description. */
> +	} else {
> +		WARN_ON_ONCE(1);
> +		return NULL;
> +	}
> +
> +	/* A valid data block will always be aligned to the ID size. */
> +	if (WARN_ON_ONCE(blk_lpos->begin != ALIGN(blk_lpos->begin, sizeof(db->id))) ||
> +	    WARN_ON_ONCE(blk_lpos->next != ALIGN(blk_lpos->next, sizeof(db->id)))) {
> +		return NULL;
> +	}
> +
> +	/* A valid data block will always have at least an ID. */
> +	if (WARN_ON_ONCE(*data_size < sizeof(db->id)))
> +		return NULL;
> +
> +	/* Subtract block ID space from size to reflect data size. */
> +	*data_size -= sizeof(db->id);
> +
> +	return &db->data[0];
> +}
> +
> +/**
> + * prb_count_lines() - Count the number of lines in provided text.
> + *
> + * @text:      The text to count the lines of.
> + * @text_size: The size of the text to process.
> + *
> + * This is the public function available to readers to count the number of
> + * lines in a text string.
> + *
> + * Context: Any context.
> + * Return: The number of lines in the text.
> + *
> + * All text has at least 1 line (even if @text_size is 0). Each '\n'
> + * processed is counted as an additional line.
> + */
> +unsigned int prb_count_lines(char *text, unsigned int text_size)
> +{
> +	unsigned int next_size = text_size;
> +	unsigned int line_count = 1;
> +	char *next = text;
> +
> +	while (next_size) {
> +		next = memchr(next, '\n', next_size);
> +		if (!next)
> +			break;
> +		line_count++;
> +		next++;
> +		next_size = text_size - (next - text);
> +	}
> +
> +	return line_count;
> +}
> +
> +/*
> + * Given @blk_lpos, copy an expected @len of data into the provided buffer.
> + * If @line_count is provided, count the number of lines in the data.
> + *
> + * This function (used by readers) performs strict validation on the data
> + * size to possibly detect bugs in the writer code. A WARN_ON_ONCE() is
> + * triggered if an internal error is detected.
> + */
> +static bool copy_data(struct prb_data_ring *data_ring,
> +		      struct prb_data_blk_lpos *blk_lpos, u16 len, char *buf,
> +		      unsigned int buf_size, unsigned int *line_count)
> +{
> +	unsigned int data_size;
> +	char *data;
> +
> +	/* Caller might not want any data. */
> +	if ((!buf || !buf_size) && !line_count)
> +		return true;
> +
> +	data = get_data(data_ring, blk_lpos, &data_size);
> +	if (!data)
> +		return false;
> +
> +	/*
> +	 * Actual cannot be less than expected. It can be more than expected
> +	 * because of the trailing alignment padding.
> +	 */
> +	if (WARN_ON_ONCE(data_size < (unsigned int)len)) {
> +		pr_warn_once("wrong data size (%u, expecting %hu) for data: %.*s\n",
> +			     data_size, len, data_size, data);
> +		return false;
> +	}
> +
> +	/* Caller interested in the line count? */
> +	if (line_count)
> +		*line_count = prb_count_lines(data, data_size);
> +
> +	/* Caller interested in the data content? */
> +	if (!buf || !buf_size)
> +		return true;
> +
> +	data_size = min_t(u16, buf_size, len);
> +
> +	if (!WARN_ON_ONCE(!data_size))
> +		memcpy(&buf[0], data, data_size); /* LMM(copy_data:A) */
> +	return true;
> +}
> +
> +/*
> + * This is an extended version of desc_read(). It gets a copy of a specified
> + * descriptor. However, it also verifies that the record is committed and has
> + * the sequence number @seq. On success, 0 is returned.
> + *
> + * Error return values:
> + * -EINVAL: A committed record with sequence number @seq does not exist.
> + * -ENOENT: A committed record with sequence number @seq exists, but its data
> + *          is not available. This is a valid record, so readers should
> + *          continue with the next record.
> + */
> +static int desc_read_committed_seq(struct prb_desc_ring *desc_ring,
> +				   unsigned long id, u64 seq,
> +				   struct prb_desc *desc_out)
> +{
> +	struct prb_data_blk_lpos *blk_lpos = &desc_out->text_blk_lpos;
> +	enum desc_state d_state;
> +
> +	d_state = desc_read(desc_ring, id, desc_out);
> +
> +	/*
> +	 * An unexpected @id (desc_miss) or @seq mismatch means the record
> +	 * does not exist. A descriptor in the reserved state means the
> +	 * record does not yet exist for the reader.
> +	 */
> +	if (d_state == desc_miss ||
> +	    d_state == desc_reserved ||
> +	    desc_out->info.seq != seq) {
> +		return -EINVAL;
> +	}
> +
> +	/*
> +	 * A descriptor in the reusable state may no longer have its data
> +	 * available; report it as a data-less record. Or the record may
> +	 * actually be a data-less record.
> +	 */
> +	if (d_state == desc_reusable ||
> +	    (blk_lpos->begin == INVALID_LPOS && blk_lpos->next == INVALID_LPOS)) {
> +		return -ENOENT;
> +	}
> +
> +	return 0;
> +}
> +
> +/*
> + * Copy the ringbuffer data from the record with @seq to the provided
> + * @r buffer. On success, 0 is returned.
> + *
> + * See desc_read_committed_seq() for error return values.
> + */
> +static int prb_read(struct printk_ringbuffer *rb, u64 seq,
> +		    struct printk_record *r, unsigned int *line_count)
> +{
> +	struct prb_desc_ring *desc_ring = &rb->desc_ring;
> +	struct prb_desc *rdesc = to_desc(desc_ring, seq);
> +	atomic_long_t *state_var = &rdesc->state_var;
> +	struct prb_desc desc;
> +	unsigned long id;
> +	int err;
> +
> +	/* Extract the ID, used to specify the descriptor to read. */
> +	id = DESC_ID(atomic_long_read(state_var));
> +
> +	/* Get a local copy of the correct descriptor (if available). */
> +	err = desc_read_committed_seq(desc_ring, id, seq, &desc);
> +
> +	/*
> +	 * If @r is NULL, the caller is only interested in the availability
> +	 * of the record.
> +	 */
> +	if (err || !r)
> +		return err;
> +
> +	/* If requested, copy meta data. */
> +	if (r->info)
> +		memcpy(r->info, &desc.info, sizeof(*(r->info)));
> +
> +	/* Copy text data. If it fails, this is a data-less descriptor. */
> +	if (!copy_data(&rb->text_data_ring, &desc.text_blk_lpos, desc.info.text_len,
> +		       r->text_buf, r->text_buf_size, line_count)) {
> +		return -ENOENT;
> +	}
> +
> +	/*
> +	 * Copy dict data. Although this should not fail, dict data is not
> +	 * important. So if it fails, modify the copied meta data to report
> +	 * that there is no dict data, thus silently dropping the dict data.
> +	 */
> +	if (!copy_data(&rb->dict_data_ring, &desc.dict_blk_lpos, desc.info.dict_len,
> +		       r->dict_buf, r->dict_buf_size, NULL)) {
> +		if (r->info)
> +			r->info->dict_len = 0;
> +	}
> +
> +	/* Ensure the record is still committed and has the same @seq. */
> +	return desc_read_committed_seq(desc_ring, id, seq, &desc);
> +}
> +
> +/**
> + * prb_first_seq() - Get the sequence number of the tail descriptor.
> + *
> + * @rb:  The ringbuffer to get the sequence number from.
> + *
> + * This is the public function available to readers to see what the
> + * first/oldest sequence number is.
> + *
> + * This provides readers a starting point to begin iterating the ringbuffer.
> + * Note that the returned sequence number might not belong to a valid record.
> + *
> + * Context: Any context.
> + * Return: The sequence number of the first/oldest record or, if the
> + *         ringbuffer is empty, 0 is returned.
> + */
> +u64 prb_first_seq(struct printk_ringbuffer *rb)
> +{
> +	struct prb_desc_ring *desc_ring = &rb->desc_ring;
> +	enum desc_state d_state;
> +	struct prb_desc desc;
> +	unsigned long id;
> +
> +	for (;;) {
> +		id = atomic_long_read(&rb->desc_ring.tail_id); /* LMM(prb_first_seq:A) */
> +
> +		d_state = desc_read(desc_ring, id, &desc); /* LMM(prb_first_seq:B) */
> +
> +		/*
> +		 * This loop will not be infinite because the tail is
> +		 * _always_ in the committed or reusable state.
> +		 */
> +		if (d_state == desc_committed || d_state == desc_reusable)
> +			break;
> +
> +		/*
> +		 * Guarantee the last state load from desc_read() is before
> +		 * reloading @tail_id in order to see a new tail in the case
> +		 * that the descriptor has been recycled. This pairs with
> +		 * desc_reserve:D.
> +		 *
> +		 * Memory barrier involvement:
> +		 *
> +		 * If prb_first_seq:B reads from desc_reserve:F, then
> +		 * prb_first_seq:A reads from desc_push_tail:B.
> +		 *
> +		 * Relies on:
> +		 *
> +		 * MB from desc_push_tail:B to desc_reserve:F
> +		 *    matching
> +		 * RMB prb_first_seq:B to prb_first_seq:A
> +		 */
> +		smp_rmb(); /* LMM(prb_first_seq:C) */
> +	}
> +
> +	return desc.info.seq;
> +}
> +
> +/*
> + * Non-blocking read of a record. Updates @seq to the last committed record
> + * (which may have no data).
> + *
> + * See the description of prb_read_valid() and prb_read_valid_info()
> + * for details.
> + */
> +static bool _prb_read_valid(struct printk_ringbuffer *rb, u64 *seq,
> +			    struct printk_record *r, unsigned int *line_count)
> +{
> +	u64 tail_seq;
> +	int err;
> +
> +	while ((err = prb_read(rb, *seq, r, line_count))) {
> +		tail_seq = prb_first_seq(rb);
> +
> +		if (*seq < tail_seq) {
> +			/*
> +			 * Behind the tail. Catch up and try again. This
> +			 * can happen for -ENOENT and -EINVAL cases.
> +			 */
> +			*seq = tail_seq;
> +
> +		} else if (err == -ENOENT) {
> +			/* Record exists, but no data available. Skip. */
> +			(*seq)++;
> +
> +		} else {
> +			/* Non-existent/non-committed record. Must stop. */
> +			return false;
> +		}
> +	}
> +
> +	return true;
> +}
> +
> +/**
> + * prb_read_valid() - Non-blocking read of a requested record or (if gone)
> + *                    the next available record.
> + *
> + * @rb:  The ringbuffer to read from.
> + * @seq: The sequence number of the record to read.
> + * @r:   A record data buffer to store the read record to.
> + *
> + * This is the public function available to readers to read a record.
> + *
> + * The reader provides the @info, @text_buf, @dict_buf buffers of @r to be
> + * filled in. Any of the buffer pointers can be set to NULL if the reader
> + * is not interested in that data. To ensure proper initialization of @r,
> + * prb_rec_init_rd() should be used.
> + *
> + * Context: Any context.
> + * Return: true if a record was read, otherwise false.
> + *
> + * On success, the reader must check r->info.seq to see which record was
> + * actually read. This allows the reader to detect dropped records.
> + *
> + * Failure means @seq refers to a not yet written record.
> + */
> +bool prb_read_valid(struct printk_ringbuffer *rb, u64 seq,
> +		    struct printk_record *r)
> +{
> +	return _prb_read_valid(rb, &seq, r, NULL);
> +}
> +
> +/**
> + * prb_read_valid_info() - Non-blocking read of meta data for a requested
> + *                         record or (if gone) the next available record.
> + *
> + * @rb:         The ringbuffer to read from.
> + * @seq:        The sequence number of the record to read.
> + * @info:       A buffer to store the read record meta data to.
> + * @line_count: A buffer to store the number of lines in the record text.
> + *
> + * This is the public function available to readers to read only the
> + * meta data of a record.
> + *
> + * The reader provides the @info, @line_count buffers to be filled in.
> + * Either of the buffer pointers can be set to NULL if the reader is not
> + * interested in that data.
> + *
> + * Context: Any context.
> + * Return: true if a record's meta data was read, otherwise false.
> + *
> + * On success, the reader must check info->seq to see which record meta data
> + * was actually read. This allows the reader to detect dropped records.
> + *
> + * Failure means @seq refers to a not yet written record.
> + */
> +bool prb_read_valid_info(struct printk_ringbuffer *rb, u64 seq,
> +			 struct printk_info *info, unsigned int *line_count)
> +{
> +	struct printk_record r;
> +
> +	prb_rec_init_rd(&r, info, NULL, 0, NULL, 0);
> +
> +	return _prb_read_valid(rb, &seq, &r, line_count);
> +}
> +
> +/**
> + * prb_next_seq() - Get the sequence number after the last available record.
> + *
> + * @rb:  The ringbuffer to get the sequence number from.
> + *
> + * This is the public function available to readers to see what the next
> + * newest sequence number available to readers will be.
> + *
> + * This provides readers a sequence number to jump to if all currently
> + * available records should be skipped.
> + *
> + * Context: Any context.
> + * Return: The sequence number of the next newest (not yet available) record
> + *         for readers.
> + */
> +u64 prb_next_seq(struct printk_ringbuffer *rb)
> +{
> +	u64 seq = 0;
> +
> +	do {
> +		/* Search forward from the oldest descriptor. */
> +		if (!_prb_read_valid(rb, &seq, NULL, NULL))
> +			return seq;
> +		seq++;
> +	} while (seq);
> +
> +	return 0;
> +}
> +
> +/**
> + * prb_init() - Initialize a ringbuffer to use provided external buffers.
> + *
> + * @rb:       The ringbuffer to initialize.
> + * @text_buf: The data buffer for text data.
> + * @textbits: The size of @text_buf as a power-of-2 value.
> + * @dict_buf: The data buffer for dictionary data.
> + * @dictbits: The size of @dict_buf as a power-of-2 value.
> + * @descs:    The descriptor buffer for ringbuffer records.
> + * @descbits: The count of @descs items as a power-of-2 value.
> + *
> + * This is the public function available to writers to setup a ringbuffer
> + * during runtime using provided buffers.
> + *
> + * This must match the initialization of DECLARE_PRINTKRB().
> + *
> + * Context: Any context.
> + */
> +void prb_init(struct printk_ringbuffer *rb,
> +	      char *text_buf, unsigned int textbits,
> +	      char *dict_buf, unsigned int dictbits,
> +	      struct prb_desc *descs, unsigned int descbits)
> +{
> +	memset(descs, 0, _DESCS_COUNT(descbits) * sizeof(descs[0]));
> +
> +	rb->desc_ring.count_bits = descbits;
> +	rb->desc_ring.descs = descs;
> +	atomic_long_set(&rb->desc_ring.head_id, DESC0_ID(descbits));
> +	atomic_long_set(&rb->desc_ring.tail_id, DESC0_ID(descbits));
> +
> +	rb->text_data_ring.size_bits = textbits;
> +	rb->text_data_ring.data = text_buf;
> +	atomic_long_set(&rb->text_data_ring.head_lpos, BLK0_LPOS(textbits));
> +	atomic_long_set(&rb->text_data_ring.tail_lpos, BLK0_LPOS(textbits));
> +
> +	rb->dict_data_ring.size_bits = dictbits;
> +	rb->dict_data_ring.data = dict_buf;
> +	atomic_long_set(&rb->dict_data_ring.head_lpos, BLK0_LPOS(dictbits));
> +	atomic_long_set(&rb->dict_data_ring.tail_lpos, BLK0_LPOS(dictbits));
> +
> +	atomic_long_set(&rb->fail, 0);
> +
> +	descs[0].info.seq = -(u64)_DESCS_COUNT(descbits);
> +
> +	descs[_DESCS_COUNT(descbits) - 1].info.seq = 0;
> +	atomic_long_set(&(descs[_DESCS_COUNT(descbits) - 1].state_var), DESC0_SV(descbits));
> +	descs[_DESCS_COUNT(descbits) - 1].text_blk_lpos.begin = INVALID_LPOS;
> +	descs[_DESCS_COUNT(descbits) - 1].text_blk_lpos.next = INVALID_LPOS;
> +	descs[_DESCS_COUNT(descbits) - 1].dict_blk_lpos.begin = INVALID_LPOS;
> +	descs[_DESCS_COUNT(descbits) - 1].dict_blk_lpos.next = INVALID_LPOS;
> +}
> +
> +/**
> + * prb_record_text_space() - Query the full actual used ringbuffer space for
> + *                           the text data of a reserved entry.
> + *
> + * @e: The successfully reserved entry to query.
> + *
> + * This is the public function available to writers to see how much actual
> + * space is used in the ringbuffer to store the text data of the specified
> + * entry.
> + *
> + * This function is only valid if @e has been successfully reserved using
> + * prb_reserve().
> + *
> + * Context: Any context.
> + * Return: The size in bytes used by the text data of the associated record.
> + */
> +unsigned int prb_record_text_space(struct prb_reserved_entry *e)
> +{
> +	return e->text_space;
> +}
> diff --git a/kernel/printk/printk_ringbuffer.h b/kernel/printk/printk_ringbuffer.h
> new file mode 100644
> index 000000000000..df03039dca7e
> --- /dev/null
> +++ b/kernel/printk/printk_ringbuffer.h
> @@ -0,0 +1,352 @@
> +/* SPDX-License-Identifier: GPL-2.0 */
> +
> +#ifndef _KERNEL_PRINTK_RINGBUFFER_H
> +#define _KERNEL_PRINTK_RINGBUFFER_H
> +
> +#include <linux/atomic.h>
> +
> +struct printk_info {
> +	u64	seq;		/* sequence number */
> +	u64	ts_nsec;	/* timestamp in nanoseconds */
> +	u16	text_len;	/* length of text message */
> +	u16	dict_len;	/* length of dictionary message */
> +	u8	facility;	/* syslog facility */
> +	u8	flags:5;	/* internal record flags */
> +	u8	level:3;	/* syslog level */
> +	u32	caller_id;	/* thread id or processor id */
> +};
> +
> +/*
> + * A structure providing the buffers, used by writers and readers.
> + *
> + * Writers:
> + * Using prb_rec_init_wr(), a writer sets @text_buf_size and @dict_buf_size
> + * before calling prb_reserve(). On success, prb_reserve() sets @info,
> + * @text_buf, @dict_buf to buffers reserved for that writer.
> + *
> + * Readers:
> + * Using prb_rec_init_rd(), a reader sets all fields before calling
> + * prb_read_valid(). Note that the reader provides the @info, @text_buf,
> + * @dict_buf buffers. On success, the struct pointed to by @info will be
> + * filled and the char arrays pointed to by @text_buf and @dict_buf will
> + * be filled with text and dict data.
> + */
> +struct printk_record {
> +	struct printk_info	*info;
> +	char			*text_buf;
> +	char			*dict_buf;
> +	unsigned int		text_buf_size;
> +	unsigned int		dict_buf_size;
> +};
> +
> +/* Specifies the position/span of a data block. */
> +struct prb_data_blk_lpos {
> +	unsigned long	begin;
> +	unsigned long	next;
> +};
> +
> +/* A descriptor: the complete meta-data for a record. */
> +struct prb_desc {
> +	struct printk_info		info;
> +	atomic_long_t			state_var;
> +	struct prb_data_blk_lpos	text_blk_lpos;
> +	struct prb_data_blk_lpos	dict_blk_lpos;
> +};
> +
> +/* A ringbuffer of "ID + data" elements. */
> +struct prb_data_ring {
> +	unsigned int	size_bits;
> +	char		*data;
> +	atomic_long_t	head_lpos;
> +	atomic_long_t	tail_lpos;
> +};
> +
> +/* A ringbuffer of "struct prb_desc" elements. */
> +struct prb_desc_ring {
> +	unsigned int		count_bits;
> +	struct prb_desc		*descs;
> +	atomic_long_t		head_id;
> +	atomic_long_t		tail_id;
> +};
> +
> +/* The high level structure representing the printk ringbuffer. */
> +struct printk_ringbuffer {
> +	struct prb_desc_ring	desc_ring;
> +	struct prb_data_ring	text_data_ring;
> +	struct prb_data_ring	dict_data_ring;
> +	atomic_long_t		fail;
> +};
> +
> +/* Used by writers as a reserve/commit handle. */
> +struct prb_reserved_entry {
> +	struct printk_ringbuffer	*rb;
> +	unsigned long			irqflags;
> +	unsigned long			id;
> +	unsigned int			text_space;
> +};
> +
> +#define _DATA_SIZE(sz_bits)		(1UL << (sz_bits))
> +#define _DESCS_COUNT(ct_bits)		(1U << (ct_bits))
> +#define DESC_SV_BITS			(sizeof(unsigned long) * 8)
> +#define DESC_COMMITTED_MASK		(1UL << (DESC_SV_BITS - 1))
> +#define DESC_REUSE_MASK			(1UL << (DESC_SV_BITS - 2))
> +#define DESC_FLAGS_MASK			(DESC_COMMITTED_MASK | DESC_REUSE_MASK)
> +#define DESC_ID_MASK			(~DESC_FLAGS_MASK)
> +#define DESC_ID(sv)			((sv) & DESC_ID_MASK)
> +#define INVALID_LPOS			1
> +
> +#define INVALID_BLK_LPOS	\
> +{				\
> +	.begin	= INVALID_LPOS,	\
> +	.next	= INVALID_LPOS,	\
> +}
> +
> +/*
> + * Descriptor Bootstrap
> + *
> + * The descriptor array is minimally initialized to allow immediate usage
> + * by readers and writers. The requirements that the descriptor array
> + * initialization must satisfy:
> + *
> + *   Req1
> + *     The tail must point to an existing (committed or reusable) descriptor.
> + *     This is required by the implementation of prb_first_seq().
> + *
> + *   Req2
> + *     Readers must see that the ringbuffer is initially empty.
> + *
> + *   Req3
> + *     The first record reserved by a writer is assigned sequence number 0.
> + *
> + * To satisfy Req1, the tail initially points to a descriptor that is
> + * minimally initialized (having no data block, i.e. data-less with the
> + * data block's lpos @begin and @next values set to INVALID_LPOS).
> + *
> + * To satisfy Req2, the initial tail descriptor is initialized to the
> + * reusable state. Readers recognize reusable descriptors as existing
> + * records, but skip over them.
> + *
> + * To satisfy Req3, the last descriptor in the array is used as the initial
> + * head (and tail) descriptor. This allows the first record reserved by a
> + * writer (head + 1) to be the first descriptor in the array. (Only the first
> + * descriptor in the array could have a valid sequence number of 0.)
> + *
> + * The first time a descriptor is reserved, it is assigned a sequence number
> + * with the value of the array index. A "first time reserved" descriptor can
> + * be recognized because it has a sequence number of 0 but does not have an
> + * index of 0. (Only the first descriptor in the array could have a valid
> + * sequence number of 0.) After the first reservation, all future reservations
> + * (recycling) simply involve incrementing the sequence number by the array
> + * count.
> + *
> + *   Hack #1
> + *     Only the first descriptor in the array is allowed to have the sequence
> + *     number 0. In this case it is not possible to recognize if it is being
> + *     reserved the first time (set to index value) or has been reserved
> + *     previously (increment by the array count). This is handled by _always_
> + *     incrementing the sequence number by the array count when reserving the
> + *     first descriptor in the array. In order to satisfy Req3, the sequence
> + *     number of the first descriptor in the array is initialized to minus
> + *     the array count. Then, upon the first reservation, it is incremented
> + *     to 0, thus satisfying Req3.
> + *
> + *   Hack #2
> + *     prb_first_seq() can be called at any time by readers to retrieve the
> + *     sequence number of the tail descriptor. However, due to Req2 and Req3,
> + *     initially there are no records to report the sequence number of
> + *     (sequence numbers are u64 and there is nothing less than 0). To handle
> + *     this, the sequence number of the initial tail descriptor is initialized
> + *     to 0. Technically this is incorrect, because there is no record with
> + *     sequence number 0 (yet) and the tail descriptor is not the first
> + *     descriptor in the array. But it allows prb_read_valid() to correctly
> + *     report the existence of a record for _any_ given sequence number at all
> + *     times. Bootstrapping is complete when the tail is pushed the first
> + *     time, thus finally pointing to the first descriptor reserved by a
> + *     writer, which has the assigned sequence number 0.
> + */
> +
> +/*
> + * Initiating Logical Value Overflows
> + *
> + * Both logical position (lpos) and ID values can be mapped to array indexes
> + * but may experience overflows during the lifetime of the system. To ensure
> + * that printk_ringbuffer can handle the overflows for these types, initial
> + * values are chosen that map to the correct initial array indexes, but will
> + * result in overflows soon.
> + *
> + *   BLK0_LPOS
> + *     The initial @head_lpos and @tail_lpos for data rings. It is at index
> + *     0 and the lpos value is such that it will overflow on the first wrap.
> + *
> + *   DESC0_ID
> + *     The initial @head_id and @tail_id for the desc ring. It is at the last
> + *     index of the descriptor array (see Req3 above) and the ID value is such
> + *     that it will overflow on the second wrap.
> + */
> +#define BLK0_LPOS(sz_bits)	(-(_DATA_SIZE(sz_bits)))
> +#define DESC0_ID(ct_bits)	DESC_ID(-(_DESCS_COUNT(ct_bits) + 1))
> +#define DESC0_SV(ct_bits)	(DESC_COMMITTED_MASK | DESC_REUSE_MASK | DESC0_ID(ct_bits))
> +
> +/*
> + * Declare a ringbuffer with an external text data buffer. The same as
> + * DECLARE_PRINTKRB() but requires specifying an external buffer for the
> + * text data.
> + *
> + * Note: The specified external buffer must be of the size:
> + *       2 ^ (descbits + avgtextbits)
> + */
> +#define _DECLARE_PRINTKRB(name, descbits, avgtextbits, avgdictbits, text_buf)			\
> +char _##name##_dict[1U << ((avgdictbits) + (descbits))] __aligned(__alignof__(unsigned long));	\
> +struct prb_desc _##name##_descs[_DESCS_COUNT(descbits)] = {					\
> +	/* this will be the first record reserved by a writer */				\
> +	[0] = {											\
> +		.info = {									\
> +			/* will be incremented to 0 on the first reservation */			\
> +			.seq = -(u64)_DESCS_COUNT(descbits),					\
> +		},										\
> +	},											\
> +	/* the initial head and tail */								\
> +	[_DESCS_COUNT(descbits) - 1] = {							\
> +		.info = {									\
> +			/* reports the first seq value during the bootstrap phase */		\
> +			.seq = 0,								\
> +		},										\
> +		/* reusable */									\
> +		.state_var	= ATOMIC_INIT(DESC0_SV(descbits)),				\
> +		/* no associated data block */							\
> +		.text_blk_lpos	= INVALID_BLK_LPOS,						\
> +		.dict_blk_lpos	= INVALID_BLK_LPOS,						\
> +	},											\
> +};												\
> +struct printk_ringbuffer name = {								\
> +	.desc_ring = {										\
> +		.count_bits	= descbits,							\
> +		.descs		= &_##name##_descs[0],						\
> +		.head_id	= ATOMIC_INIT(DESC0_ID(descbits)),				\
> +		.tail_id	= ATOMIC_INIT(DESC0_ID(descbits)),				\
> +	},											\
> +	.text_data_ring = {									\
> +		.size_bits	= (avgtextbits) + (descbits),					\
> +		.data		= text_buf,							\
> +		.head_lpos	= ATOMIC_LONG_INIT(BLK0_LPOS((avgtextbits) + (descbits))),	\
> +		.tail_lpos	= ATOMIC_LONG_INIT(BLK0_LPOS((avgtextbits) + (descbits))),	\
> +	},											\
> +	.dict_data_ring = {									\
> +		.size_bits	= (avgtextbits) + (descbits),					\
> +		.data		= &_##name##_dict[0],						\
> +		.head_lpos	= ATOMIC_LONG_INIT(BLK0_LPOS((avgtextbits) + (descbits))),	\
> +		.tail_lpos	= ATOMIC_LONG_INIT(BLK0_LPOS((avgtextbits) + (descbits))),	\
> +	},											\
> +	.fail			= ATOMIC_LONG_INIT(0),						\
> +}
> +
> +/**
> + * DECLARE_PRINTKRB() - Declare a ringbuffer.
> + *
> + * @name:        The name of the ringbuffer variable.
> + * @descbits:    The number of descriptors as a power-of-2 value.
> + * @avgtextbits: The average text data size per record as a power-of-2 value.
> + * @avgdictbits: The average dictionary data size per record as a
> + *               power-of-2 value.
> + *
> + * This is a macro for declaring a ringbuffer and all internal structures
> + * such that it is ready for immediate use. See _DECLARE_PRINTKRB() for a
> + * variant where the text data buffer can be specified externally.
> + */
> +#define DECLARE_PRINTKRB(name, descbits, avgtextbits, avgdictbits)				\
> +char _##name##_text[1U << ((avgtextbits) + (descbits))] __aligned(__alignof__(unsigned long));	\
> +_DECLARE_PRINTKRB(name, descbits, avgtextbits, avgdictbits, &_##name##_text[0])
> +
> +/* Writer Interface */
> +
> +/**
> + * prb_rec_init_wd() - Initialize a buffer for writing records.
> + *
> + * @r:             The record to initialize.
> + * @text_buf_size: The needed text buffer size.
> + * @dict_buf_size: The needed dictionary buffer size.
> + *
> + * Initialize all the fields that a writer is interested in. If
> + * @dict_buf_size is 0, a dictionary buffer will not be reserved.
> + * @text_buf_size must be greater than 0.
> + *
> + * Note that although @dict_buf_size may be initialized to non-zero,
> + * its value must be rechecked after a successful call to prb_reserve()
> + * to verify a dictionary buffer was actually reserved. Dictionary buffer
> + * reservation is allowed to fail.
> + */
> +static inline void prb_rec_init_wr(struct printk_record *r,
> +				   unsigned int text_buf_size,
> +				   unsigned int dict_buf_size)
> +{
> +	r->info = NULL;
> +	r->text_buf = NULL;
> +	r->dict_buf = NULL;
> +	r->text_buf_size = text_buf_size;
> +	r->dict_buf_size = dict_buf_size;
> +}
> +
> +bool prb_reserve(struct prb_reserved_entry *e, struct printk_ringbuffer *rb,
> +		 struct printk_record *r);
> +void prb_commit(struct prb_reserved_entry *e);
> +
> +void prb_init(struct printk_ringbuffer *rb,
> +	      char *text_buf, unsigned int text_buf_size,
> +	      char *dict_buf, unsigned int dict_buf_size,
> +	      struct prb_desc *descs, unsigned int descs_count_bits);
> +unsigned int prb_record_text_space(struct prb_reserved_entry *e);
> +
> +/* Reader Interface */
> +
> +/**
> + * prb_rec_init_rd() - Initialize a buffer for reading records.
> + *
> + * @r:             The record to initialize.
> + * @info:          A buffer to store record meta-data.
> + * @text_buf:      A buffer to store text data.
> + * @text_buf_size: The size of @text_buf.
> + * @dict_buf:      A buffer to store dictionary data.
> + * @dict_buf_size: The size of @dict_buf.
> + *
> + * Initialize all the fields that a reader is interested in. All arguments
> + * (except @r) are optional. Only record data for arguments that are
> + * non-NULL or non-zero will be read.
> + */
> +static inline void prb_rec_init_rd(struct printk_record *r,
> +				   struct printk_info *info,
> +				   char *text_buf, unsigned int text_buf_size,
> +				   char *dict_buf, unsigned int dict_buf_size)
> +{
> +	r->info = info;
> +	r->text_buf = text_buf;
> +	r->dict_buf = dict_buf;
> +	r->text_buf_size = text_buf_size;
> +	r->dict_buf_size = dict_buf_size;
> +}
> +
> +/**
> + * prb_for_each_record() - Iterate over a ringbuffer.
> + *
> + * @from: The sequence number to begin with.
> + * @rb:   The ringbuffer to iterate over.
> + * @s:    A u64 to store the sequence number on each iteration.
> + * @r:    A printk_record to store the record on each iteration.
> + *
> + * This is a macro for conveniently iterating over a ringbuffer.
> + *
> + * Context: Any context.
> + */
> +#define prb_for_each_record(from, rb, s, r) \
> +for ((s) = from; prb_read_valid(rb, s, r); (s) = (r)->info->seq + 1)
> +
> +bool prb_read_valid(struct printk_ringbuffer *rb, u64 seq,
> +		    struct printk_record *r);
> +bool prb_read_valid_info(struct printk_ringbuffer *rb, u64 seq,
> +			 struct printk_info *info, unsigned int *line_count);
> +
> +u64 prb_first_seq(struct printk_ringbuffer *rb);
> +u64 prb_next_seq(struct printk_ringbuffer *rb);
> +
> +unsigned int prb_count_lines(char *text, unsigned int text_size);
> +
> +#endif /* _KERNEL_PRINTK_RINGBUFFER_H */
> -- 
> 2.20.1
> 

_______________________________________________
kexec mailing list
kexec@xxxxxxxxxxxxxxxxxxx
http://lists.infradead.org/mailman/listinfo/kexec




[Index of Archives]     [LM Sensors]     [Linux Sound]     [ALSA Users]     [ALSA Devel]     [Linux Audio Users]     [Linux Media]     [Kernel]     [Gimp]     [Yosemite News]     [Linux Media]

  Powered by Linux